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Gamma-ray binaries

(Dubus, 2006)
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Gamma-ray binaries

Pulsar-wind scenario (Dubus, 2006)
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= Very efficient emitters - energy peaks at
>1 MeV

= Stellar-wind/circumstellar disc from O/Be
star collides with relativistic pulsar wind
from NS
= produces a termination shock
= particles accelerated to HE & VHE

= O-type systems — IBS between stellar
wind and pulsar wind
= Emission usually peaks near periastron
(X-ray) / inferior conjunction (IC TeV)

= Be-type systems — shock forms between
stellar wind and/or circumstellar disc and
pulsar wind




I l 7 6/PSR B1259-63 | (Roberts et al, 2025)
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Be gamma-ray binaries

Relative Flux

= Several studies looking into modelling the non-thermal emission/re-producing the

double-peaked behaviour of the lightcurves
(e.g. Chen & Takata, 2019,2022; Chen et al, 2024; Tokayer et al, 2021)

- but peak positions not always physically constrained by true disclorbit geometry
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Be gamma-ray binaries

= Can we reproduce the behaviour of the non-

thermal emission in the Be ~-ray binaries (i.e. the -]

double-peaked lightcurves) from the interaction
with the disc — physically confined by disc/orbit
geometry

Model the non-thermal emission

Integrated flux >350 GeV [x10~12 erg cm~2s
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Physical model of the disc

q)disc A

Case | - static disc (no precession)
= Orbit:
a, e, P) (Tper7 TO)

= Assuming a Keplerian, axis-symmetric disc in
vertical hydrostatic equilibrium

p(@, ) = po (};*)n exp [; (H(Cw))zl

(Carciofi & Bjorkman, 2006)

= Disc orientation parameters:
ldiscy Pdisc

= Based off of physical position of pulsar in orbit (r, 6)
and w.r.t. the disc height (¢) and radius () we can
then determine the disc density (pus.) & velocity
(vaisc) @nd/or the stellar wind density (p.) & velocity

(vu)
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Physical model of the disc: Case |l

= For LS |1 +61°303, we have a super-orbital period
and observe emission peaks shifting/migrating —
precessing disc?

Orbital phase

020 0 e 08 L0 L2 Lt e L8 2 0

Case Il — with precession
= Orbit parameters:
a, €, P: (Tper7 TO)

= Disc orientation parameters:

idiSC7 ©0,disc Pprec ﬁd'
. t T TQPO,disc 2 ISC
m Spdisc(t) — 0,disc + 7T
Pprec

= For each time (t) across several orbits (~Psuper),
the orientation of the disc is re-calculated (724isc)
— proceed then to determine pulsar position and
disc height and radius components

- solve shock parameters

| SrSyS—



Solving the shock stand-off (1)

Determine the ram pressures of stellar wind (p.)
and disc (pasc) along the orbit

Ram-pressure of stellar wind:

. 2
pw,pqlar — pW,pOlal‘UW,polar

2
M* = 4mr PwUw,polar

s (Waters et al, 1988;
Uw,polar(r) = V0,polar + (voo - UO,polar) <

1— &) Kong et al, 2011)
r

(For now, density distribution is still ~spherical ... not a proper polar wind)

Ram-pressure of the circumstellar disc:
2
Pdisc = PdiscVUdisc
_ R, \" 1 ¢ ’ (Carciofi & Bjorkman, 2006)
p(@,C) = po (;) exXp 5 (%> ]

Shock stand-off distance (Rs) depends on the
momentum pressure ratio between the flow
upstream (stellar wind) and downstream (pulsar
wind) of the shock (pw polar/Pdisc = Ppw)
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Solving the shock stand-off (Il)
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Solving the shock stand-off (l11)

= Based off the dominant ram pressure (pw/Pdisc) ;: wind density
we scale («) the momentum pressure £-.] disc
between the wind - smoothly transition -k
between the shock being formed between N velocity
the pulsar and stellar-wind/ disc 22
1N = Nw + (Ndisc — Mw ) EN
1/2 20
R.o— d . ram pressure
S 2 20 A
1 +nt/2 o
= From the shock stand-off distance we then V| = AT =
model the non-thermal emission - < I
physically constrained by the geometry of n w0 N
the dISC A:. """ BnarySeparation e
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Modelling the non-thermal emission

= For now, we consider only the X-ray emission

= Assume one-zone model —» majority of the
emission produced at the apex of the shock

= Assume a fixed Power-Law electron distribution:

N(y) oy p=19

* Pgnen « B - synchrotron emission will scale with
the magnetic field strength at emission region
(i.e. apex of the shock)

= B depends on the shock stand-off distance from

the pulsar: . 1/2
P Elc o /
R?2 1+0

B =3(1—40)
= . B x1/Rs —» we scale B as:

—1
5= ()

for a magnetic field strength B, = 1G at an
arbitrary shock distance Ry = dperi

(Kennel & Coroniti, 1984)
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Application with a non-precessing disc

HESS J0632+057:
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= New orbital solution with SALT data (Matchett .
and van Soelen, 2025) provides an orbit which is
more consistent with the X-ray/TeV emission

peaks produced by interaction with the disc
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Application with a non-precessing disc Preliminary

= Changing the disc rotation ( @qisc)
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Application with a non-precessing disc

Preliminary

Integrated flux 0.3-10 keV (x10~12 ergcm~2571)

o

Changing the disc inclination (Zaisc )
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Application with a precessing disc

LS 1 +61°303:

= Phase drift in the X-ray peak around ¢~0.6 (Chernyakova, 2012)
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Modelling the optical (Be disc) emission

Relative TIlux
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= Building on the BEDISK emission line synthesis code (e.g.

Gies et al 2006; Sigut & Jones, 2007) we can model the Ha, HB

and H~ emission lines:

- based on the disc density, radius and inclination.

= Determines the optical depth, thus flux vs. velocity distribution for
each cell in a rectilinear disc grid - for a Keplerian disc inclined w.r.t

the LoS

e.g. Hp:
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Modelling the optical (Be disc) emission

(Re=20R:; i=20; po=6.0e-12)

: ‘ I 1 A . 1.8 Waisc=60 — € =00
= Implementation of an ‘elliptical’ disc: ey =02
1.6 — eq=0.4

= Very simple approximation to force an
asymmetric material distribution / “mimic” spiral
density structures / truncating of the disc that

results in the asymmetric line profiles observed /ﬂ
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Modelling the optical (Be disc) emission

EW(Ho) [A]

17

12

= Implementation of a precessing disc:

= |n addition to seeing a shift in the X-ray peaks for

6-

LS | +61 303, we also see super-orbital modulation

of the EW - consistent with disc inclination (disc
normal) changing with precession .. line profile
changing.

‘ ‘ l(Zzamanov et al, 2000)
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Modelling the optical (Be disc) emission Preliminary

= Fitting the modelled/synthetic emission lines to SALT HRS data for HESS J0632+057
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Modelling the optical (Be disc) emission

Preliminary

= Fitting the modelled/synthetic emission lines to SALT HRS data for HESS J0632+057
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Summary

= Using a simple, physical disc model we model the shock stand-off parameters and
the non-thermal emission
= Can implement precession into the physical disc model, which does reproduce a
shifting/migrating emission peak — but exact positions of modeled X-ray peaks still
need to be constrained.
= Include IC emission & incorporate particle cooling for the input particle spectrum.

= Adapted the BEDISK code to model synthetic Balmer emission lines to fit to the

optical spectroscopic observations:

= Implementation of an “elliptical disc”/asymmetric disc to model asymmetric line
peak profiles.

= Implementation of precession (from physical disc model) - can mimic super-orbital
modulation seen in the EWs of LS | +61 303.

= Feed BEDISK parameter fits into physical disc model — constrain disc parameters
needed for the non-thermal emission modelling.

Thank you



