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Payload for Ultrahigh Energy Observations

« Search for RF signals from B~
Askaryan effect |

= Jargeting neutrinos above
~1EeV

= NASA long duration balloon

= Launching from McMurdo

= On track to launch in ~1 month!
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Building on ANITA

ANITA IV

= Higher frequency band
(300-1400MH2)

= Doubled antenna count to 96

= Drop-down low-frequency
Instrument

= Radio-frequency system on
chip (RFSoC)

= |nterferometric trigger
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Interferometric Trigger

= Looking for very faint signals &6
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Interferometric Trigger

U [mV]

= Looking for very faint signals
= Beamforming signals from 8
antennas
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Interferometric Trigger

= Looking for very faint signals S5

= Beamforming signhals from 8
antennas

= Coherent sumimproves SNR
by sqrt(N)= 2.8
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Interferometric Trigger

] ) _ 0.025 1
= Looking for very faint signals
. . 0.020 A
= Beamforming signhals from 8
antennas 0:015
= Coherent sum improves SNR 00101
by sqrt(N)= 2.8 5 0005
= Dedispersion >
0.000
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Interferometric Trigger

>

G

Looking for very faint signals
Beamforming signals from 8
antennas

Coherent sum improves SNR
by sqrt(N)= 2.8

Dedispersion

Coincidence between
neighboring antenna sets
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Interferometric Trigger
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The Low Frequency Instrument

7l

“

= 50-500MHz band ‘ ‘ﬁ&»
= Sinuous antennas printed on >
fabric SN
= Folded up during launch
= Enhances sensitivity to air
showers:
« Cosmicrays
« Earth-skimmingt
 ANITA “mystery events”
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Flavor Measurements with PUEO? o .ﬂ




Can we actually detect this?

. At first, looks very unlikely

. But there are actually a few things helping:
 Neutrino & lepton interactions at UHE
 Event geometry
* Signal timing
« Easier statistics
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UHE Lepton Interactions

Lepton keeps most of its
energy

lo E/GeV):
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UHE Lepton Interactions

Lepton keeps most of its
energy

At 10EeV: ~50% of events
have >90% of energy in
lepton

lo E/GeV):
694 g10(E/
—_— 5.0 - 10.0
—_— 6.0 —_— 12.0
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UHE Lepton Interactions

Lepton actually produces
higher-energy showers
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Event Geometry

= This drawing is not to scale at all!
= Real distances O(100km)
= Either we see all showers at

C. angle, or none of them!




Signal Timing

= Cherenkov effect due to time compression
= We observe entire propagation

at Cherenkov angle
= Signals appear much closer in

time than they arel!




Signal Timing

= Time between signals smaller

than recorded waveform S
= Will “accidentally” record

secondary showers T
= Search for sub-threshold T

signals 3
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Example Waveforms
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Example Waveforms
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Can we actually find these signals?

Vpol

100 A

= |Let’s say we find a neutrino...
« We are sure it's a neutrino
signal
 We can reconstruct the
event geometry
= Canwe tellif thereisa 2nd
pulse in the waveform?
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Matched Filter Search

= Template generation based on
primary pulse

= |ndividual template for each
channel

= Calculate matched filter
response using channels within
50° azimuth
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False Positive Rate

>

G

Neutrino signals are
iIndependent of background
Therefore, can estimate false
positive rate from background
sample

Forced triggers taken during
flight

For now, simulate thermal
noise
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Vpol

False Positive Rate

U [mV]

= Map correlation to false | | |
positive rate _ , , e
= Classify event as y/tif N
probability below threshold EN
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Results
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Outlook: Other Flavors

Hadronic Shower Electromagnetic Shower

0.4 T i L —— N06=0.50
— 0AB=1.00

= EM showers are longer than .l —
hadronic showers -
= LPM effect =
= Distinct features in spectrum
* Already demonstrated for _ N
iIn-ice detectors (Coleman o e o e e ww § e W s ww ww

et al 2024)
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Outlook: Other Flavors

Hadronic Shower Electromagnetic Shower
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= EM showers are longer than —
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= Distinct features in spectrum
* Already demonstrated for _ N
iIn-ice detectors (Coleman N o g T mmome mw B o su g oo m =
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et al 2024)
= But: Muons also produce EM
showers
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Summary and Conclusion

= PUEO will probe neutrino flux at highest energies
= Ontrack tolaunchin ~1 month
= Sensitivity to neutrino flavor:

e p/T can produce secondary showers

 We should be able to see some of them!

* Further flavor sensitivity from RF spectrum
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Backup




Signal Timing

= Time between signals smaller
than recorded waveform

= Will “accidentally” record
secondary showers

= Search for sub-threshold
signals
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Results
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