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Essential Asymmetries of Nature

Boosting Z21-cm Constraints on
Dark Matter

Including results from 2 very recent papers, in collaboration with:

- Rouven Essig (YITP, Stony Brook), Daniele Gaggero (INFN, Pisa), Sergio Palomares-Ruiz (IFIC, Valencia),
Gregory Suczewski (YITP, Stony Brook), Mauro Valli (INFN, Rome). 251014877 — “Astrophysical Uncertainties...”

- Tracy Slatyer (MIT, Cambridge). 2510.26791 — “Boosting the cosmic 21-cm..”
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Setting the scene
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Setting the scene — Neutral Hydrogen
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The 21-cm signal
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The 21-cm signal
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The 21-cm signal
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The 21-cm signal

CMB temperature

\ / Gas kinetic temperature

—1 —1 —1
T -1 T}/ T kak +xaTk UV dependent
¢ =

X-ray dependent
1 + x+x, o

The spin temperature is dictated by its (de)coupling to T}, and 1. This is determined by:

1. Absorption and emission of 21cm photons from and to the CMB
2. Collisional coupling between H atoms

3. Wouthuysen-Field Effect (Lyman-alpha photons)
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21lcm physics (a primer)

Differential brightness temperature / CMB temperature
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21lcm physics (a primer)

Differential brightness temperature / CMB temperature
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21lcm physics (a primer)

Differential brightness temperature / CMB temperature
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The 21-cm signal
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The 21-cm signal
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21lcm physics (a primer)
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21lcm physics (a primer)
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densities for collisions) and 1y >~ 1,
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21lcm physics (a primer)
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21cm physics (with exotics)
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1. Extra heating of the gas
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2. Extra Lyman-alpha photons (new)
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The signal space from ‘standard’ astrophysics is wide
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Independent constraints on astropnysics

- UVLFs [1809.08995,2003.04442, 211013919, etc.]

- CMB optical depth [1809.08995, 2502.03525, etc.]

- Chandra X-ray and HERA additional heating [2502.03525, 2108.07/282, etc.|

- Starburst99 Synthesis models (+ more recent)

Astrophysical parameter | BENCHMARK | LESS-CONSTRAINING | MORE-CONSTRAINING
N, 9690 3 % 10° 4 % 10° , BENCHMARK
. _ / -===-M _C —
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Accreting |

BHs: A typical heating signal

L=c¢€ (M) Mc?
d°E Y PDM
dV dr | ._ iV

1nj

Details in [2403.18895, 2510.14877]
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LESS-CONSTRAINING SCENARIO: N, =3 x 103, Lx = 10* ergs™* M ' yr, T\;; = 10K
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The astropnysical scenario matters
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Consider Lyman-a instead ot
neating



Lyman-alpha from particle (e.g. axion) decay
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Lyman-alpha from particle (e.g. axion) decay
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Back to the 21-cm signal
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Fiducial scenario bound
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Fiducial scenario bound
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Fiducial scenario bound
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;What else can we learn from this?

1029 I L L L e :
5 21 g;ﬂ_&@g—}iﬂﬁé _________
KA1-Low ]
| 1028 F21- QCf-lchn QERAF L :
- Other DM candidates at 3 21em MOG EommmmT
different scales may emit 0« | =TT -
efficiently in to Lyman-banad | Jpessmep fe LeoT______°
1026 Wy Eeeeeeee el eemmmmTT T ]
| o é B S CMB o
- Astrophysics robust probes? | i 7 '
= 1025 T el ;
. Dark Ages signal even more "'
‘obust to these signatures 104} | .
(future lunar detectors) | /_5,'
10%} i
5 [l #
i ] g |
1022 . 17, N N B B R
29 30 39 40) 45 50
| my |eV] |
| TeVPA — Nov 4 - Boosting 21-cm Constraints on Dark Matter - 33



osummary

- The uncertainties on the astrophysics,

e

m

Ler

00O

Ng |

N the null

an

L systemar

nypothesis, is t

‘ic for 21-cm fo

Ne MOSt

'eCasls

- Lyman-alpha from dark matter can help!

.
e

Y
0
‘e
.

‘e
.
.
.
.
.
.
.
.
.
.
.
.
‘e
.
.
.
.
.
e
.
.
.
.
.
e
.
.
.
.
.
.
.
‘e
.
.
.
.
.
.
e
.

[-m--- LESS-CONSTRAINING
- —— BENCHMARK
it MORE-CONSTRAINING

100

O
Y
e
0
Y
0
Yo
0
Yo
»
‘e
.
‘e
‘e
.
‘e
Y
.
Y
.
0
-

100 or T,
Mppy [ M)

10295 I L

21-com

ACG HERA _ R S 5
ACGHERA __—--===77 _

28;jLCH18KA1‘¥9W
102 2 ) HER A

—
— -
—
——_—__
— -
— -

1077}

- 1026 2\\‘2%)[_{ .......... Z;g;
p)

_—_—
—__
-
-

E\ c e D 3
— F N ‘\ : _,‘J . R D
L . P ;

RSUEI SR P

T
10245‘ |
r : ,

l

l

|

1022'n S

45 50

" TeVPA — Nov 4

Boosting 21-cm Constraints on Dark Matter

34



Al CM

3 and 21-cm sSignal

CMB

10°F —— standard cosmology
[ | exotic injection A
-1k —— exotic injection B
>< 102 = \

1073

100 L oo L N N N N L L I

101 102

Redshift (z)

103

" TeVPA — Nov 4

Boosting 21-cm Constraints on Dark Matter

35



_ _ _ 1/2
T+ x, T+ x, T T | + 7
k™ k Y
1 +x, + x; I¢ 10
Time after 1Pmillion 109 million 259 million 500 million 1biJ”ion
Big Bang S
[Years]

Redshift=160
50 | | | | | | | | | | | |

Reionization begins Reionization ends

o
‘IIH

Dark Ages

Brightness [mK]
O
o

4
-
o

Heating begins Cosmic time
/

_1 50 1 | I | 1 | L | | ! | | ! | ! |
20 40 60 80 100 120 140 160 180 200

Frequency [MHZz] Pri’[ChQI’d Cmd Loeb (2012)

IIH‘IIII‘IIH

_HHMIH|HH L]

o

d
q

TeVPA — Nov 4 - Boosting 21-cm Constraints on Dark Matter e 36



A3 The EDGES affair

An absorption profile centred at 78 MHz in the sky-averaged spectrum [10.1038/nature25792]
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AD: Systematics related to astropnysics
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Ab: BHIL

Ballistic limit

Steady state spherical

H. Bondi (1952)

(GMPBH)Zpb

M = 47/
BHL (V]%H . 682)3

‘It seems likely that it represents the order of

magnitude of the accretion rate” - Bondi 1952

—

Hoyle, F., & Lyttleton, R. A. (1939)
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Fixed by Euler’s equations at the
jonisation front

Free parameter parametrising
temperature in the ionised region

Park and Ricotti 2013: numerical simulations + semi-
analytic formula including radiative feedback.
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A’J.How to perform a forecast

given a fiducial signal, varying only fppgy

4. Perform your MCMC, or Fisher Forecast, or compute the likelihooad

10(): —————

1. Implement PBH accretion by modifying
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A8: What else can these Lyman-series photons do?
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AQ: Correlations between parameters
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AlO: X-rays and Lyman-alpha

- X-ray heating of the gas - Lyman-alpha coupling to the gas
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All: Hera Collaboration 2021+2022
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Al2: Evolution equations

dX (z) B

dz (1 +2)H(7)

ar, 1
dz 147

(R(z) = 1(2) = Iy(2))

2T, + (T, = Teyp)| + K,
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