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Boosting 21-cm Constraints on 
Dark Matter
Including results from 2 very recent papers, in collaboration with: 

• Rouven Essig (YITP, Stony Brook), Daniele Gaggero (INFN, Pisa), Sergio Palomares-Ruiz (IFIC, Valencia), 
Gregory Suczewski (YITP, Stony Brook), Mauro Valli (INFN, Rome). 2510.14877 — “Astrophysical Uncertainties…” 

• Tracy Slatyer (MIT, Cambridge). 2510.26791 — “Boosting the cosmic 21-cm…”
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Setting the scene
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Setting the scene — Neutral Hydrogen

z ∼ 103
z ∼ 30 z ∼ 5

Fully ionized

Today

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas

Hgas



TeVPA — Nov 4 Boosting 21-cm Constraints on Dark Matter

The 21-cm signal
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The 21-cm signal
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The 21-cm signal
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The spin temperature is dictated by its (de)coupling to  and . This is determined by: 

1. Absorption and emission of 21cm photons from and to the CMB  

2. Collisional coupling between H atoms 

3. Wouthuysen-Field Effect (Lyman-alpha photons) 

Tγ TK

CMB temperature

TS
−1 =

T−1
γ + xkTk

−1+xαTk
−1

1 + xk+xα

Gas kinetic temperature

UV dependent
X-ray dependent

The 21-cm signal
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21cm physics (a primer)
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Differential brightness temperature

Fraction of neutral hydrogen
Spin temperature

CMB temperature

δTb ∝ xHI (1 −
Tγ

TS ) ( 1 + z
10 )

1/2

TS
−1 =

T−1
γ + xkTk

−1+xαTk
−1

1 + xk+xα
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21cm physics (a primer)
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Differential brightness temperature

Fraction of neutral hydrogen
Spin temperature

CMB temperature

δTb ∝ xHI (1 −
Tγ

TS ) ( 1 + z
10 )

1/2

TS
−1 =

T−1
γ + xkTk

−1+xαTk
−1

1 + xk+xα

•  TS = Tγ → δTb = 0

•  TS > Tγ → δTb > 0

•  TS < Tγ → δTb < 0}



TeVPA — Nov 4 Boosting 21-cm Constraints on Dark Matter

21cm physics (a primer)
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Differential brightness temperature

Fraction of neutral hydrogen
Spin temperature

CMB temperature

δTb ∝ xHI (1 −
Tγ

TS ) ( 1 + z
10 )

1/2

TS
−1 =

T−1
γ + xkTk

−1+xαTk
−1

1 + xk+xα

•  TS = Tγ → δTb = 0

•  TS > Tγ → δTb > 0

•  TS < Tγ → δTb < 0}
The signal is dictated by !Tγ /TS

TS
−1 =

T−1
γ + xkTk

−1+xαTk
−1

1 + xk+xα
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The 21-cm signal
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The 21-cm signal
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21cm physics (a primer)

13

Villanueva-Domingo, PhD Thesis, 2021

Radiative coupling most efficient (too low 
densities for collisions) and  TS ≃ Tγ
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21cm physics (a primer)

14

Villanueva-Domingo, PhD Thesis, 2021

Radiative coupling most efficient (too low 
densities for collisions) and  TS ≃ Tγ

Lyman-alpha photons from first sources 
couples  , through the WF effect TS → TK
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21cm physics (a primer)
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Villanueva-Domingo, PhD Thesis, 2021

Radiative coupling most efficient (too low 
densities for collisions) and  TS ≃ Tγ

Lyman-alpha photons from first sources 
couples  , through the WF effect TS → TK

X-ray heating of the gas, where WF effect still 
couples  . We see emission when TS → TK
TK > Tγ
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21cm physics (with exotics)
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Villanueva-Domingo, PhD Thesis, 2021

Radiative coupling most efficient (too low 
densities for collisions) and  TS = Tγ

Lyman-alpha photons from first sources 
couples  , through the WF effect TS → TK

X-ray heating of the gas, where WF effect still 
couples  . We see emission when TS → TK
TK > Tγ

Exotic Injections change two (measurable) things: 
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1. Extra heating of the gas

17

Villanueva-Domingo, PhD Thesis, 2021

Radiative coupling most efficient (too low 
densities for collisions) and  TS = Tγ

Lyman-alpha photons from first sources 
couples  , through the WF effect TS → TK

X-ray heating of the gas, where WF effect 
still couples  . We see emission when TS → TK
TK > Tγ

TS
−1 =

T−1
γ +xαTk

−1 + xkTk
−1

1+xα+xk
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2. Extra Lyman-alpha photons (new)
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Villanueva-Domingo, PhD Thesis, 2021

Radiative coupling most efficient (too low 
densities for collisions) and  TS = Tγ

Lyman-alpha photons from first sources 
couples  , through the WF effect TS → TK

X-ray heating of the gas, where WF effect still 
couples  . We see emission when TS → TK
TK > Tγ

TS
−1 =

T−1
γ +xαTk

−1 + xkTk
−1

1+xα+xk
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The signal space from “standard” astrophysics is wide

19

1709.02122
• redshift of the Lyα coupling  
• moment of the heating transition 
• midpoint of reionization
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Independent constraints on astrophysics

20

• UVLFs [1809.08995,2003.04442, 2110.13919, etc.] 

• CMB optical depth [1809.08995, 2502.03525, etc.] 

• Chandra X-ray and HERA additional heating [2502.03525, 2108.07282, etc.] 

• Starburst99 Synthesis models (+ more recent) 
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Accreting PBHs: A typical heating signal
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L = ϵ ( ·M) ·Mc2

d2E
dV dt

inj

= LfPBH
ρDM

M
[Image from Jeremy Schnittman - NASA]

Details in [2403.18895, 2510.14877]
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MPBH = 100 M⊙
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The astrophysical scenario matters!
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Consider Lyman-  instead of 
heating

α

24



TeVPA — Nov 4 Boosting 21-cm Constraints on Dark Matter

Lyman-alpha from particle (e.g. axion) decay
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Lyman-alpha from particle (e.g. axion) decay
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extra heating (old)
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Back to the 21-cm signal

27
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Fiducial scenario bound
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Fiducial scenario bound
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What if astrophysics is “unfavourable”

2507.10533
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Fiducial scenario bound
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What else can we learn from this?
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• Other DM candidates at 
different scales may emit 
efficiently in to Lyman-band 

• Astrophysics robust probes? 

• Dark Ages signal even more 
robust to these signatures 
(future lunar detectors)
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Summary

• The uncertainties on the astrophysics, 
entering in the null hypothesis, is the most 
important systematic for 21-cm forecasts 

• Lyman-alpha from dark matter can help!
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Pritchard and Loeb (2012)

TS
−1 =

T−1
γ + xαT−1

c + xkT−1
k

1 + xα + xk
δTb ≃ 27 mK xHI (1 + δ) (1 −

Tγ

TS ) ( 1 + z
10 )

1/2
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A3: The EDGES affair

37

An absorption profile centred at 78 MHz in the sky-averaged spectrum [10.1038/nature25792]

δTb ≃ 27 mK xHI (1 + δ) (1 −
Tγ

TS ) ( 1 + z
10 )

1/2
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A4: Power spectrum status - HERA and NenuFAR
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2507.105332210.04912
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A5: Systematics related to astrophysics
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X-Ray 
Luminosity Lyman Alpha

Virial  
Temperature

[Laura Lopez-Honorez+2016]

SFR ∝ exp (−
Mturn

Mh )
Mturn ∝ T3/2

vir
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A6: BHL                   

40

H. Bondi (1952)

Hoyle, F., & Lyttleton, R. A. (1939)

Ballistic limit

Steady state spherical

·MBHL = 4πλ
(GMPBH)2ρb

(v2
BH + c2

s )3

“It seems likely that it represents the order of 
magnitude of the accretion rate” - Bondi 1952
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A6.1: PR                   

41

·MPR = 4πρin
(GMPBH)2

(vin2 + cs,in2)3/2

Park and Ricotti 2013: numerical simulations + semi-
analytic formula including radiative feedback.

Fixed by Euler’s equations at the 
ionisation front Free parameter parametrising 

temperature in the ionised region 
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A6.2: PR bound              

42
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A7: How to perform a forecast

43
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A8: What else can these Lyman-series photons do?

44

• Lyman-Werner photons (11.2-13.6 eV) 
suppress formation of molecular 
hydrogen 

‣ Direct collapse of pristine 
hydrogen to form SMBHs

2404.03909
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A9: Correlations between parameters

45

3.8 4.0 4.2

log10 Tvir

°3

°2

°1

lo
g 1

0
f P

B
H

40.4

40.5

40.6

lo
g 1

0
L

X

3.8

4.0

4.2

4.4

lo
g 1

0
N

Æ

4.0 4.4

log10 NÆ

40.4 40.6

log10 LX

°3 °2 °1

log10 fPBH

PR

BHL

0.0

0.4

0.8

1.2

Æ
A

C
G

§

°2.4

°1.8

°1.2

°0.6

lo
g 1

0
f

M
C

G
e
sc

40.0

40.4

40.8

lo
g 1

0
L

X
/
Ṁ
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A10: X-rays and Lyman-alpha

46

• X-ray heating of the gas • Lyman-alpha coupling to the gas
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A11: Hera Collaboration 2021+2022

47
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A12: Evolution equations

48

dXe(z)
dz

=
1

(1 + z)H(z)
(R(z) − I(z) − IX(z))

dTb

dz
=

1
1 + z [2Tb + γ(Tb − TCMB)] + Kh

Jα = Jastro
α + JDM

α


