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Dark matter content

The advantage of using HR cosmological simulations

Full access to the DM distribution
position and velocity

- Density profiles
- Phase space distribution 0
- Assembly history

If you trust your baryonic physics
you can trust your dark matter.. Right? All dark matter

Then you can compare with observations and guide DM searches.. Right?
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The Mochima Simulations -
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Dark matter related problems
regarding dwarfs galaxies -

Cold Dark matter only

e Cusp-Core problem (Diversity)

When it comes to dark matter halos T hi AN
Simulations predict one thing (mostly cusps) i

Observations infer other ( mostly cores) 107 = — -
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Baryons complicate the story but could solve the problems
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Bose et al. (2019)

stellar feedback can't alter inner dark matter, so the
galaxy remains cuspy. NIHAO: Cores are likely created by a very strong FB

feedback expands dark matter, creating cored
APOSTLE and Auriga: do not find evidence of core formation at any mass or any

profiles. ] correlation between the inner slope of the DM density profile and temporal
Central stars deepen gravity enough to counter variations in the SFH

expansion, resulting in cuspier profiles.
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New Horizons: Cores form through
supernova-driven gas removal, which alters
the central gravitational potential, inducing
dark matter to migrate to larger radii.

Similar to what was proposed by Governato et
al. 2012; Pontzen & Governato 2012;

w— Tollet+ (2016)
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NIHAO: Cores are likely created by a very strong FB

APOSTLE and Auriga: do not find evidence of core formation at any mass or any
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Hints on: Stars vs central DM density
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Single blowout is insufficient. (Gnedin & Zhao 2002)

Repeated, bursty star formation cycles drive core
formation. (Pontzen & Governato 2012)

Early, rapid star formation (concurrent with halo
collapse) is inefficient at creating cores. (Chan 2015
FIRE , Jackson 2023 Newhorizons)

There seems to be a link between extended SFHs
and lower central densities. (Onorbe et al. (2015), Mun
et al 2025)



Hints on: Stars vs central DM density

(observations)
T L | T L | T L | T L | T L |
. Classicals
Hayashi et al. (2025) e UFDs
®  SPARC
o 0.0F o e U NIHAO
2, " T = = ST '7% it el
—r - v T — ; = | e =
E 0'0 i » | =i r__ %I% 1 ‘: L
’ == - .
= ! e — et
S} T Y t r%—— (11" [ }
9__,\ —1 0 — = 25 f — % =il ol “ 1] T
5} K
0 =% : ’
s —1.58 NFW (Pt }-501 Tvir) =
= : = : L
1. X 1 [ 1 .
N 1 ‘§ 1 . 1 A
—2.0r Lo 1 Fel Fe iSO
0 1 > & 1y D> PN
& 1O i & Y
NS) Q) ) P
L [N | e IIJIHII . - IIJ:HII e ||\=H|l_ T
140 = 107 1= e
j\/[*/Mha‘lo

“Our findings suggest that baryonic processes may play a significant role in
shaping the central dark matter structures and could account for much of the
observed diversity, although some discrepancies still remain”

Oman et al. (2015): large diversity in
dwarf galaxy rotation curves at fixed
stellar mass, suggesting another
parameter (likely SFH) matters.

Read et al. (2019): extended SFHs—
lower central DM densities.

Bouché et al. (2022); Collins & Read
(2022): correlation between prolonged
SF and shallower cores.

Hayashi et al. (2025): 115 SPARC
galaxies, from cores (y = 0) to cusps (y
=~ 2). Scatter is larger than in
simulations, suggesting baryonic
assembly and SF/FB histories drive the
diversity.
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Governato 2009, El-Zant et al 2016, Freundlich et al 2020, li et al 2022. (not an exhaustive list)



Host.halos
In the Mochima runs

All dark matter



Dark matter distribution
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Sublgalos
In the Mochima runs

All dark matter



Galaxy halo conexion
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The SFH

Lets take subhalos with
10 & < M/Msun<5x10"°
And in particular two halo
examples E and F.
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A subhalo with an easy life A subhalo with a harsh life
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A subhalo with an easy life

A subhalo with a harsh life
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t90% = 7 Gyr invariably exhibit cusps profiles

and show minimal evolution in y over time. 0.5

In contrast, galaxies with t90% < 7 Gyr show

a wide spread in y and are characterized by 0.0t

significant temporal fluctuations.
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Conclusions

Subhalo survival depends on host concentration and stellar binding;
early SFHs preserve cusps,
While
extended and/or recent SFHs drive fluctuating cores.

e Subhalo survival set by host potential depth and concentration

e Stellar mass in subhalos increases resilience to disruption

e Low-mass, dark subhalos are preferentially destroyed (resolution?)

e  Cumulative mass function shallower than DMO; too-big-to-fail alleviated

e Inner slopes show wide diversity (cusps and temporary cores)

t90% correlates with slope: early — cusps, late — cores

The observed diversity in inner dark matter structure -often viewed as a challenge to cold dark matter
models- can arise naturally from the interplay between star formation history and environmental context.
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