

ID de la contribución : 128

Tipo : **Talk**

Cosmic Tensions and Neutrino cosmology

martes, 4 de noviembre de 2025 17:00 (15)

Tensions between independent cosmological probes continue to challenge the Λ CDM framework. The persistent $\sim 5\sigma$ discrepancy between early- and late-time determinations of the Hubble parameter remains unresolved, while recent DESI BAO measurements, when interpreted within Λ CDM, yield constraints on the sum of neutrino masses that increasingly conflict with lower bounds from particle physics. Dynamical dark energy models offer a possible route to relax the neutrino mass tension by introducing additional background-level degrees of freedom. In some cases, these models are even favored over a cosmological constant at more than $\sim 4\sigma$. However, such late-time extensions generally fail to resolve the Hubble tension and can, in fact, worsen it. Conversely, models that appear promising in raising H_0 tend to push the inferred neutrino mass bounds toward unrealistically small values, deepening the disagreement with oscillation experiments. This leaves us questioning whether a consistent resolution is still within reach, or whether we are instead confronted with an unavoidable trade-off. To address this, in this talk I will further explore the three-way interplay between dark sector physics, neutrino cosmology, and cosmic tensions, reviewing what a resolution could require in terms of new physics, and analyzing the role of potential unaccounted-for observational systematics in the data.

Primary author(s) : GIARE, William (University of Sheffield)

Presenter(s) : GIARE, William (University of Sheffield)

Clasificación de la sesión : Cosmology

Clasificación de temáticas : Cosmology