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Profound pheno implications

• Many new particles, possibly at lab 
scales:

• “Fundamental constants” are 
VEVs of scalars [DC & Olivier Simon 
PRL & PRD (2025)]

• Numerous axions: [Arvanitaki et al 
(2009),… DC et al PRD (2021,2022,2023)]
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Profound pheno implications

• Many new particles, possibly at lab 
scales:

• “Fundamental constants” are 
VEVs of scalars [DC & Olivier Simon 
PRL & PRD (2025)]

• Numerous axions: [Arvanitaki et al 
(2009),… DC et al PRD (2021,2022,2023)]

• Numerous new gauge fields: 
[Agrawal et al (2019),… DC, & Zachary 
Weiner PRL & PRD (2024,2025)]
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Axiogenesis
• QCD Axion can drive a baryon asymmetry 

[Co, Harigaya, 2019]

•  is chem. pot. for quark chiral current
·θ

• Chiral quarks source chem. pot. for B + L

YB ≃
45

2π2g⋆S

3
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∑g (7y−2
ug

+ 5y−2
dg )
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·θ
T

Sphaleron Transitions
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Axiogenesis
• Kinetic Misalignment [Co, Harigaya, 2019]

• Axion comes with radial mode
Φ = ρeia/fa = ρeiθ

• Shift symmetry  brokenθ → θ + c

• After inflation,   ρ ≫ fa ⟹ ρ2 ·θ ∝ T3

• Axion velocity survives until EWPT

[Harigaya & Co PRL (2020)]

Φn/Mn−4
pl + h . c .
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Axiogenesis
• Problem 1

• DM over-/Baryon under-production

• Problem 2

• QCD axion quality

• Both resolved naturally if the QCD axion is one of many in the String Axiverse
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YB = 9 × 10−11 ⟹ ·θ(TEWPT) ≈ 5 KeV
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The string axiverse
• Axions arise as zero-modes of gauge fields in extra 

dimensions

• Number of axions related to topological invariants

• QCD axion is the linear combination of these 
fields that couples to QCD:

ℒ = ∑
pq

1
2

Kpq∂θp∂θq − ∑
ip

Λ4
i cos(Qipϕp + δi)

ϕQCD = ∑
p

Qipϕp

4D Confining gauge groups 

Extra-dimensional instantons
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Our toy axiverse

• QCD axion is a linear combination of two axions

• Another linear combination gets its potential from a dark  (WLOG )SU(Nd) θ2

• Dark sector was in thermal equilibrium with SM
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V /P /Q = e−ML cos(n1θ1 + n2θ2)
V(L) ∼ M4(eαML + e−βML)
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• Overclosure:  sphalerons 

absorb  energy

SU(Nd)
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• No light fermions with  charge 

 strong sphaleron damping of 

SU(Nd)
→ ·θ2
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• No light fermions with  charge 
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A two-axion example

• Overclosure:  sphalerons 

absorb  energy

SU(Nd)
θ2

• No light fermions with  charge 

 strong sphaleron damping of 

SU(Nd)
→ ·θ2

• Mixing with θ1

• Avoid overclosure
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Phenomenology

• Haloscope: EV-scale QCD-like axion and 
heavier partner 

• Collider: new weak-charged fermions with 
 

• Astrophysics: Axion minihalos 

• Cosmology: Dark glueball decay 
signatures from BBN

mf ∈ [0.25, 4.0] TeV

Strong CP

Baryon asymmetry

Dark Matter
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