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AXI0JENESIS

. Kinetic Misalignment [Co, Harigaya, 2019

. Axion comes with radial mode

0 =,0€ia/f =p€i9

. Shift symmetry @ — @ + ¢ broken
O"/Mi™ +h.c.
. After inflation, p > 1 =>p26’ x T°

- Axion velocity survives until EWPT

[Harigaya & Co PRL (2020)]
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AXIOJENESIS

e Problem1

. DM over-/Baryon under-production Y.,=90x 107!l — Q(TEWPT) ~ 5 KeV

e Problem2

- QCD axion quality CD”/Mnl_4 +h.c.
p

- Both resolved naturally if the QCD axion is one of many in the String Axiverse

David Cyncynates ICTP Trieste



The string axiverse




The string axiverse

« AXIONS ar

dime

NSIO

ise as zero-modes of gauge fields in extra

S




The string axiverse

- AXxions arise as zero-modes of gauge fields in extra
dimensions

- Number of axions related to topological invariants




The string axiverse

- AXxions arise as zero-modes of gauge fields in extra
dimensions

- Number of axions related to topological invariants

1
- 4
SZ — E Equﬁé’pﬁé’q — E , Ai COS(Qip¢p T 51)
Pq ip



The string axiverse

- AXxions arise as zero-modes of gauge fields in extra
dimensions

- Number of axions related to topological invariants

1
- =
L = Y, 5K00,00, = ¥ Nl cos(Qyeh, +5)

- 4D Confining gauge groups

Extra-dimensional instantons



The string axiverse

- AXxions arise as zero-modes of gauge fields in extra
dimensions

- Number of axions related to topological invariants

1
- =
L = Y, 5K00,00, = ¥ Nl cos(Qyeh, +5)

. QCD axion is the linear combination of these - 4D Confining gauge groups

fields that couples to QCD:

Extra-dimensional instantons



The string axiverse

- AXxions arise as zero-modes of gauge fields in extra
dimensions

- Number of axions related to topological invariants

1
- =
L = Y, 5K00,00, = ¥ Nl cos(Qyeh, +5)

« QCD axionis the linear combination of these
fields that couples to QCD:

baco = D, Qipthy
P

TS~ 4D Confining gauge groups

Extra-dimensional instantons
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Qur toy axiverse

Most-general two-axion Lagrangian that solves strong CP

_ L gnoa Lo & ~ Xy, =
OCZ — gSM + Efl (@6’1) + Efz (892) + S—ﬂ(clﬁl + Czez)GCGC + S_ﬂezGde

« QCD axionis a linear combination of two axions

- Another linear combination gets its potential from a dark SU(N,;) (WLOG 6,)

- Dark sector was in thermal equilibrium with SM



A two-axion example

B | , 1 5, , O - a;  ~
g — gSM + Efl (@6’1) + Efz (&92) + g(clel + CZHZ)GCGC + S_]Z-HZGde
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A two-axion example

B | , 1 5, , O - a;  ~
g — gSM + Efl (@91) + Efz (692) + g(clel + CZQZ)GCGC + S_ﬂHZGde

- Quality &IC:

. AXions are protected by gauge symmetry — no
quality problem.

. PQ breaking provided radion dynamics
(e.g. in Goldberger Wise mechanism)

ML

VPQ =€ COS(nlel + n2(92)
V(L) - M4(eaML n e—ﬂML)
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A two-axion exampl

P =% 12(992 12()92
= SM+2f1( 1) +2f2( 5"+

« Overclosure: SU(N,) sphalerons

absorb @, energy

» No light fermions with SU(N,)) charge

— strong sphaleron damping of 92

e Mixing with 6,
e Avoid overclosure
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Phenomenology

- Haloscope: E\V-scale QCD-like axion ana
heavier partner

Strong CP ¢—— ) Dark Matter

- Collider: new weak-charged fermions with

m, € [0.25,4.0] TeV

- Astrophysics: Axion minihalos

Baryon asymmetry
- Cosmology: Dark glueball decay

signatures from BBN
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