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Neutrino Telescopes

Neutrino Telescopes are huge “fixed” target experiments
> Measure flux of neutrinos (or other particles!)

> Infer properties of neutrino, Earth, ...
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Muon Telescopes?

> Computation of rate of muon tracks from first principles

Beacom, et al., 02

d . . Dutta, et al., 02
/ p” (t, &, p) — Boltzmann Equation Dutta, et sl 05

Gonzalez-Garcia, et al., 09
Gaisser, et al., 16

> Only unknown — by
d’? [ fu ——

> Solve neutrino-tau system once and for all, feed into equation for muons
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.66.021302
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.66.077302
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.72.013005
http://dx.doi.org/10.1016/j.astropartphys.2009.05.002
https://www.cambridge.org/de/universitypress/subjects/physics/cosmology-relativity-and-gravitation/cosmic-rays-and-particle-physics-2nd-edition?format=HB

Muon transport equation

Boltzmann Equation

= K T
ot o7 op (652

+7

: do dr
> Kernel encodes upscatterings D By, decays D T,
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> QED processes are fast, and they contribute to ﬁ

dE, . dE, N
W T Vg S Theke

> Muon decay and v, repopulation is slow, we neglect it

Under these approximations, equation is linear
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Line-of-sight

Fixed azimuth

Impinging neutrino

altitude Local horizon (alt. = 0)

54/59,,)

. Detector i
.. Surrounding material .-~

> Find trajectories along which the equation becomes ordinary

> fu (6E9) = [y dEK(4(6), #(€), 5(€))

> Neutrlno energy - conversion point relation:

E;neas ~ Eﬁrodefbug ~ Euefbug

2 1{/(101

~

> Integral ranges over Reg ~ 1/b,
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Expected rate of events

time X muon energy X solid angle

dN, _ number of muons
dtdE,dQ,
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KM3-230213A

Case study (and prompt): KM3-230213A

> Assessment of tension with lceCube

> Tension quantified in terms of

A #1c

F#KM3NeT KM3-230213A bin

Diffuse flux, both power law and energy localized

Point source , which may be transient

7/11



Diffuse power-law

EN\7 .
(;3@ = ¢5 ( V) —3 A~ 70 — 3.1 0 tension compatible w/ Li, et al., 25
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https://arxiv.org/abs/2502.04508v2
https://iopscience.iop.org/article/10.3847/1538-4357/ac4d29

Point source

[ o () o< 6 (9, — Qps (1)) ]

Altitude at Km3NeT (o)
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KM3Net

1000+

100

Depth of detector(km water equivalent)

lam 6 am 11am 4pm 9pm

Hour of the Day

APS ~

[TAlic | _(Att)ic | Ri% -~ 140 Larger tension than diffuse

T it KM3
[TAlkmsner (At )kmaner  REH unlike Li, et al., 25
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https://arxiv.org/abs/2502.04508v2

Neutrino transparency

IceCube, E, =1 EeV Tenpateney

10

06 <6—L/LU>IC ~ 099

N
-180° -150° -120°

S. Palmisano

KM3NeT, E, = 1 EeV Trnpatoney
1.0

o <€_L/L">KM ~ 0.48
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Summary and Conclusions

Summary of tension with IC

Model Aic/xkm B factor Ao
Diffuse (power-law) 70 21 3.1
° PS 140 ~ 35 3.8
2 PS (transient) 12 ~~ 2.2 1.6
& Diffuse (energy localized) 70 ~ 3.4 2.4

Our approach

> First-principle computation

> Flux at the crust and v physics (nuisance) parameter directly linked to
experimental rate, not hard-coded in MC

> Can perform fit directly from measured quantity (muon energies)

> Simple system of equations, can be implemented in a code
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Thank you for the attention!



Earth density profile
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Neutrino cross-section

> In the limit of small z (£, > 10PeV), neutrino DIS cross section scales as

d*oun  GpMiy [(1+(1—y)*)35
dedy ~ ma? (1+ zys)?

A
o, n(E,)1.48 x 107 cm® x < Ey )
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> Eventually it can scale at most as log?(E,) Froissart, 1061

UHE v experiments with transport equation

ii /i


https://link.springer.com/article/10.1140/epjc/s10052-015-3318-8
https://journals.aps.org/pr/abstract/10.1103/PhysRev.123.1053

Neutrino cross-section

> Expected number of events in UHE bins largely independent on A
@9 = 0.1, energy bin = [10 PeV, 400 PeV/]
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Inelasticity

S. Palmisano

Probability Density p(y)

—— MadGraph
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Inelasticity y
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Attenuation of neutrinos

3
D(£>EV) = exXp ( - / LV(?CEV)> = exp (_ Lwafev;,e(Ey)> ’
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Neutrino-7 system

p
Ofv, | = Ofv, - Ofu, Lo
. au . = avor—ind. \l; &y Py KTeca 74, au B
5 + & 7 + Py, o5, Ch a.(t, %, Pv,,) + Kiccay (%, Do,,)
.
Ofv, | & Ofu. | & Ofu, oo - .
5 + - o7 + P, - o = Chavor—ind. (t, T, P, ) + Kdeccay (t, T, Do, )
Ofr | o Ofr - Of v S oo ~
. o = K latering (64, Pr) — I'+ (D7) f=
It + OF +p a5, scattermg( Z,p: ) (p )f

S. Palmisano

> Neutrino attenuation Beacom, et al., 02

1

e [ dy
o ¢V(§v EV) 1— y
0

ONC E,
8§ - _A(Ey) ’P(y)a@/(fv iy)

> Taus are more complex putta, et al, 05

do
d*p- (&)

Fo~ /dg//dEuAtt.qsiB(Eu)nfﬁfEf exp [(mT/ET)/(d,bT) (1 76*17*5')]
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.66.021302
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.72.013005

Line-of-sight

dt/d¢ = /v &) =t+ (£ — Lap)/v
dz/d¢ = n, = ¢ (&) =7 (Lap — tp
dp/d = —b, (&) B(E) = piy exp( 7 dE'b(E"))

S. Palmisano

Fixed azimuth

' Re — hiag Impinging neutrino

s altitude Local horizon (alt. = 0)

) EA/E(Q,,)

N Detector g
"~ Surrounding material ,:'4'/ -
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Charged particles

dE
— <d—;> =a¢(Ee) + be(Eo)Ee = beEy PDG

Very different for the three leptons

> b;l ~ few km — tracks, bangs

2
> bt~ (%) b;l ~ 0 — no tracks, only bangs
Iz

S. Palmisano

> b7! ~ tens of km, with large uncertainties due to DIS
> But decays in shorter lenghts (unless very high energy) —

muon tracks, double bangs

Distances [km]
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Particle energy [GeV]
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https://academic.oup.com/ptep/article/2020/8/083C01/5891211?login=false

Effective Area
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https://iopscience.iop.org/article/10.1088/0004-637X/796/2/109
https://agenda.infn.it/event/37867/contributions/227901/attachments/121528/177256/neutrino2024_antarca_final_Caiffi_12062024.pdf

7-induced events

> Neglecting £’ dependence of attenuation, as b — 0 (p- (&) ~ p-)

fr x (1 —eE/dT) — (1 —efL/dT)

> Naively, at E- 2> 1EeV, yield from PS is

»> unsuppressed at KM3NeT
% supressed as Lic/dr < 0.2

Particle energy [GeV]
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Scales
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Bayes Factors

[ P(6: )dé1 [ Lp(01)mi(6:)dby

[ P(6:2|D)d0, [ Lp(02)(62)dbs

Bi,2(D) =

> Bi2 > 1 — model 1 favored by data wrt model 2

[ Lp, O|M)7(6)dd
[ LDy (0|M) ety (6)d0

BDI/D2 =

> Tretp, (0) yields a good fit of Dy for model M
> If w(é) such that Bp, /p, > 1 — tension between datasets D; and D-

Remark (B ~ x* with d d.o.f)

Ao = v2erfc™? {Q (g;2ln3)} ,

where Q(a, z) =T'(a,2)/T'(a,0), and T'(a, 2) = [ dtt* e "

xii/xiii



Energy-Localized Sources

Lico(N) = e AN and Lxmsz1 = Ne ™V,
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