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The interplay between the Dirac and Majorana 
terms produces a wide variety of phenomena:

neutrino-less double beta decay

see-saw mechanism 
(heavy neutral leptons)

oscillations into light steriles

quasi-Dirac neutrinos*

exactly Dirac! exactly Majorana!more Majorana

ℒν−mass = − mDνRνL + mRνT
RC†νR + H.c.

Dirac term Majorana term

*also known as pseudo-Dirac
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|ν±
j ⟩ =

active sterile

In the quasi-Dirac limit , we expect three sets of “hyper finely” split neutrino mass eigenstates: mD ≫ mR

The hyperfine mass differences  would produce an 
oscillatory disappearance signal on very, very long baselines.

δm2

PQD
α→ β = ∑

j

|Uαj |
2 |Uβj |

2 cos2 (
δm2

j L
4E )

Each of these mass states are 50-50 mixes of  
“active” neutrinos  and undetectable “steriles”:{νe, νμ, ντ}
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Wolfenstein (NPB ’81); Petcov (PLB ’82);  Valle, Singer (PRD ’83)
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plot adapted from: Martinez-Soler, 
Perez-Gonzalez, Sen, 2105.12736

Ansarifard, Farzan, 2211.09105

Martinez-Soler, Perez-Gonzalez, 
Sen, 2105.12736

Beacom, Bell, Hooper, Learned, 
Pakvasa, Weiler, 0307151;

We need “extra-terrestrial” neutrinos 
to probe Quasi-Dirac models!

Solar: 
Franklin, Perez-Gonzalez, Turner, 

2304.05418      

SN1987A: 

DSNB: de Gouvêa, Martinez-Soler, Perez-
Gonzalez, Sen, 2007.13748

Astro 
point 
sources:

KC, Martinez-Soler, Argüelles, 
Babu, Dev, 2212.00737

Galactic: MacDonald, KC, Argüelles, Batista, 
Martinez-Soler (ICRC 2025)

Cosmo-
genic:

Leal, Naredo-Tuero, Funchal, 
2504.10576
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Previous work: QD sensitivity using point sources

1. IceCube Collaboration, 2211.09972

NGC 1068

Eν [TeV]

co
un

ts

prediction according to 
IceCube’s best-fit flux

with QD oscillations 
( )δm2 = 10−18eV2

*1.

The QD signature is an oscillation-
induced disappearance dip:

Sensitivities from multiple sources can 
be directly stacked.
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Previous work: QD sensitivity using point sources

1. IceCube Collaboration, 2211.09972

We found that the sensitivity is limited by: 

- poor energy resolution (~30% in ) 
- need to marginalize over unknown spectra 
- limited statistics  (<100 events per source)

log10 E

δm2 [eV2]

total Gen-2 
sensitivityNGC 1068

Eν [TeV]

co
un

ts

prediction according to 
IceCube’s best-fit flux

with QD oscillations 
( )δm2 = 10−18eV2

*1.

The QD signature is an oscillation-
induced disappearance dip:

Sensitivities from multiple sources can 
be directly stacked.
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The total astrophysical flux is much larger and 
better characterized than that of individual 
sources… 

…and has been measured in multiple flavor 
combinations. 

The most recent IceCube analyses found a >  
preference for a break around 30TeV!

4σ

Can we use IceCube’s diffuse flux measurements 
to constrain QD parameter space? 

=> How is the total source population distributed 
across the universe? 

NGC 
1068

TXS 0506+056

Diffuse Astrophysical

IceCube Collaboration, 2211.09972
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NGC 
1068

TXS 0506+056

Diffuse Astrophysical

IceCube Collaboration, 2211.09972 The total astrophysical flux is much larger and 
better characterized than that of individual 
sources… 

…and has been measured in multiple flavor 
combinations. 

The most recent IceCube analyses found a >  
preference for a break around 30TeV!

4σ

Can we use IceCube’s diffuse flux measurements 
to constrain QD parameter space? 

=> How is the total source population distributed 
across the universe? 

re-plotted from: 

1. IceCube Collaboration, 2001.09520

2. IceCube Collaboration, 2402.18026

 

*1.

*2.

cascades = all-flavor
tracks =  dominatedνμ
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NGC 
1068

TXS 0506+056

Diffuse Astrophysical

IceCube Collaboration, 2211.09972 The total astrophysical flux is much larger and 
better characterized than that of individual 
sources… 

…and has been measured in multiple flavor 
combinations. 

The most recent IceCube analyses found a >  
preference for a break around 30TeV!

4σ

Can we use IceCube’s diffuse flux measurements 
to constrain QD parameter space? 

=> How is the total source population distributed 
across the universe? 

re-plotted from: 

1. IceCube Collaboration, 2001.09520

2. IceCube Collaboration, 2402.18026

3. IceCube Collaboration, 2507.22234

*1.

*2.

*3.
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The total astrophysical flux is much larger and 
better characterized than that of individual 
sources… 

…and has been measured in multiple flavor 
combinations. 

The most recent IceCube analyses found a >  
preference for a break around 30TeV!

4σ

Can we use IceCube’s diffuse flux measurements 
to constrain QD parameter space? 

=> How is the total source population distributed 
across the universe? 

NGC 
1068

TXS 0506+056

Diffuse Astrophysical

IceCube Collaboration, 2211.09972

re-plotted from: 

1. IceCube Collaboration, 2001.09520

2. IceCube Collaboration, 2402.18026

3. IceCube Collaboration, 2507.22234

*1.

*2.

*3.
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Gröth, Ahlers, 2503.07718

Note:  
Capel, Mortlock, Finley (2022) 
found that IceCube’s non-
observation of point sources 
requires sources to be very 
dim and dense if you assume 
flat evolution.

Scale as  at small , for (1 + z)m z m = 0, 3, 5

 =Leff(z) ∫
z

0

dz′￼

H(z′￼)(1 + z′￼)2The oscillation probability depends on In our study, we

- Consider multiple physical 
evolution functions  

- Assume all sources have the same 
emission spectrum , which 
can be a single power law, power 
law with a cutoff, or a broken 
power law 

- Perform a likelihood fit to the 
IceCube flux measurements 

- Marginalize over all emission 
spectrum parameters

ρ(z)

ϕ0(z)

Capel, Mortlock, Finley, 2005.02395
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In our study, we

- Consider multiple physical 
evolution functions  

- Assume all sources have the same 
emission spectrum , which 
can be a single power law, power 
law with a cutoff, or a broken 
power law 

- Perform a likelihood fit to the 
IceCube flux measurements 

- Marginalize over all emission 
spectrum parameters

ρ(z)

ϕ0(z)

Φβ(E) = ∫ dz∑
α

PQD
αβ (E, Leff(z)) × fα × ϕ0(E(1 + z)) ×

ρ(z)
H(z)

Our total diffuse flux, including QD oscillations, is given by:

of source population

= oscillation probability 

= initial flavor fraction 

= emission spectrum 

= redshift evolution

PQD
αβ

fα
ϕ0

ρ(z)

 =Leff(z) ∫
z

0

dz′￼

H(z′￼)(1 + z′￼)2
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In our study, we

- Consider multiple physical 
evolution functions  

- Assume all sources have the same 
emission spectrum , which 
can be a single power law, power 
law with a cutoff, or a broken 
power law 

- Perform a likelihood fit to the 
IceCube flux measurements 

- Marginalize over all emission 
spectrum parameters

ρ(z)

ϕ0(z)

Φβ(E) = ∫ dz∑
α

PQD
αβ (E, Leff(z)) × fα × ϕ0(E(1 + z)) ×

ρ(z)
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Our total diffuse flux, including QD oscillations, is given by:

of source population
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= initial flavor fraction 
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= redshift evolution
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After integrating over all sources, we find that the QD disappearance dip remains resolvable! 
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We find no preference for a QD hypothesis. 

We constrain  at 3 , 
driven by incompatibility at the break around 30TeV:

δm2 ∈ [5 − 7.5] × 10−18 eV2 σ
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For our main result, we use a source evolution following the SFRD and emission given by a broken power law.  

Results (1): Assuming equal squared-mass differences, δm2
k = δm2
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Redshift evolution models taken from: Gröth, Ahlers, 2503.07718; Elías-Chávez, Martínez, 2503.07718

Results (1): Assuming equal squared-mass differences, δm2
k = δm2

The significance of our constraints depend strongly 
on the scaling of the source evolution :ρ(z)

∼ (1 + z)5}

} ∼ (1 + z)3

= (1 + z)0 excluded
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Results (2): Assuming two distinct squared-mass differences => flavor-dependent effects

QD oscillations caused by  
disproportionately affect cascades, 
while those caused by  
disproportionately affect tracks.

δm2
1

δm2
3
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Results (2): Assuming two distinct squared-mass differences => flavor-dependent effects

QD oscillations caused by  
disproportionately affect cascades, 
while those caused by  
disproportionately affect tracks.

δm2
1

δm2
3

However, we find this additional 
flexibility does not significantly improve 
the joint fit ( )1.4σ
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Conclusions:
- The effects of extremely long baseline quasi-

Dirac oscillations are resolvable in the total 
astrophysical  flux 

- We set constraints on 
 

ν

δm2 ∈ [5,7.5] × 10−18 eV2

Prospects:

- IceCube’s diffuse flux measurements are 
continuously improving  
- better control of systematics 

- Our understanding of what astrophysical 
objects produce neutrinos is improving! 
- => better characterize source population 

distribution and emission spectra 

¡Gracias!
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Constraints based on the  CombinedFit measurements 
 are consistent with those using Cascades and ESTES.

= pion decay 

= BPL 

~ SFRD

fα
ϕ0

ρ(z)
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= pion decay 

= BPL 

~ SFRD

fα
ϕ0

ρ(z)
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= pion decay 

= BPL 

~ SFRD

fα
ϕ0

ρ(z)
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The non-observation of point 
sources requires sources to be 
very dim and dense if you 
assume flat evolution 
— see Capel et. al. (2017).

Capel, Mortlock, Finley, 2005.02395
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= NT
L C† [ 0 mD

mD mR] NL

How do neutrinos acquire mass?

ℒν−mass = − mDνRνL + mRνT
RC†νR + H.c.

We could write down a Yukawa coupling to a right-handed neutrino…

In the QD limit, , the 1-dimensional eigensystem is: mD ≫ mR

[νL

νC
R ] = Rθ [ν+

ν−] m± = mD(1 ± mR/mD)
tan 2θ = 2mD/mR ≫ 1 maximal mixing

tiny mass-squared difference
The 3D system is approximately 
equal to three copies of the 1D 
system; the mixing between 
mass generations (PMNS) are 
unchanged!
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QD-nos undergo very long baseline oscillations between the sterile and active states:

Pα→ β = ̂V exp(iM̂2/2Et) ̂V†
2

βα

= ∑
j

|Uαj |
2 |Uβj |

2 cos2 (δm2
j L/4E) + ∑

i>j

Re [exp[iΔm2
ijL/2E] × …]
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Quasi-Dirac oscillations are not washed out by extragalactic baselines.  
This is because the coherence length is 

Therefore, for benchmark values of 10 TeV and , the coherence length is comparable to 
the radius of the observable universe, even for wavepacket sizes , orders of magnitude 
smaller than the smallest wave packets typically considered. 

δm2
k = 10−19eV2

σx ∼ 10−19m


