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Young massive star clusters (YMSC):

Cosmic rays and y-ray sources

YMSCs: Clusters of hundreds OB-type (M. >3 M)

stars packed in few pc.
Young: Age <30 Myr
Massive: M>103 M

-
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y-ray emission detected in coincidence

with more than a dozen YMSC!
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YMSC: extended v—ray‘sourcéé

Most of YMSCs shows
emission sizes consistent
with projected dimension

of wind-blown bubble

CGPS 21 cm continuum

The y-ray emission is
extended (0.1°-5°)!

—

/ Detecting and analyzing\
extended y-ray emission is a
challenging task!
Detection bias for low
surface brightness sources
Non-detected (unresolved)
YMSCs can contribute to the
galactic diffuse emission

\_ J




YMSC: extended y-ray sources (" Detecting and analyzing

extended y-ray emission is a

Most of YMSCs shows challenging task!
emission sizes consistent The y-ray emission is Dfetecgc.)nhl;naS for low
with projected dimension extended (0.1°-5°)! I >UTTALE DTISATNESS SOUTEES

Non-detected (unresolved)
YMSCs can contribute to the
galactic diffuse emission

| Férmi-LAT all sI;y map e, \ /

of wind-blown bubble

PGDE = Psea + PUS

Galactic Cosmic Unresolved

diffuse ray sea sources
emission




Galactic diffuse emission

Analysis of GDE (LHAASO+Fermi-LAT) suggests contribution from
unresolved sources (Zhang et al 2023)
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Work objective *L
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| S. Menchiari et al 2025: Lower limit
: estimate to the contribution of

: YMSCs to the GDE.
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Non-resolved emission from YMSCs
is not negligible!!!
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Work objective *L

S. Menchiari et al 2025: Lower limit

YMSCs to the GDE.

Non-resolved emission from YMSCs
is not negligible!!!

/
|
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|
|
|
|
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g OBJECTIVES:

1) Estimate neutrino emission and cross check with IceCube
observations
2) Estimate number of YMSCs detected with KM3NeT
3) Provide a public template for the analysis of Galactic neutrino
emission
4) Improve the work of S. Menchiari et al 2025

a) Include contribution from supernovae

b) Refine the target density profile for hadronic emission
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Method | Method employed in Menchiari et al 2025
A similar method is employed in this work

STEP 1

é )
Modeling galactic

population of YMSCs:
a) Use info from local
population of YMSCs
[cluster formation rate
and mass distribution]
b) Extrapolate to the
Milky Way using realistic
spiral pattern
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Synthetic YMSCs popui'ation' " Total number of YMSCs: 2243
(Age <30 Myr, M. >103 M)

Single realization of the Galactic population
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Method | Method employed in Menchiari et al 2025
A similar method is employed in this work

] \
I I
: STEP 1 STEP 2 :
e N [ N |
' | Modeling galactic Modeling stellar :
' | population of YMSCs: | | population in a YMSC: :
' | a) Use info from local a) Generate and evolve the |
! population of YMSCs mock population !
' | [cluster formation rate b) Modeling stellar wind !
i | and mass distribution] physics using pure !
| b) Extrapolate to the empirical approach ;
' | Milky Way using realistic | - y ;
| spiral pattern |
\ ]
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Method

STEP 1

Method employed in Menchiari et al 2025
A similar method is employed in this work

STEP 2

p
Modeling galactic

population of YMSCs:
a) Use info from local
population of YMSCs
[cluster formation rate
and mass distribution]
b) Extrapolate to the
Milky Way using realistic
spiral pattern

Modeling stellar
population in a YMSC:

a) Generate and evolve the
mock population
b) Modeling stellar wind
physics using pure
empirical approach

STEP 3

4 p
CR acceleration, v and
Y-ray emission
a) CR injection (cluster wind +
supernovae)

b) Calculate y-ray (pure
hadronic) and v emission
c) Mask resolved emission

from YMSCs
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CR distribution in YMSCs

1) Acceleration at the cluster wind TS (Morlino
et al 2021)
A. Spectral slope: p*?
B. Normalization: 10% of L, spent to

accelerate CRs

2) Acceleration by SNe (Mitchell et al 2024)
A. Only SNe exploded in one advection time
B. Spectral slope: p43
C. Normalization: 10% efficiency

Credit: Yannick Akar
(https://app.astrobin.com/i/p8ik3p?r=0)

Interstellar
Medium

(A. Mitchell et al 2024)
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CR distribution in YMSCs

1) Acceleration at the cluster wind TS (Morlino
et al 2021)
A. Spectral slope: p*?
B. Normalization: 10% of L, spent to

accelerate CRs

2) Acceleration by SNe (Mitchell et al 2024)
A. Only SNe exploded in one advection time
B. Spectral slope: p43
C. Normalization: 10% efficiency

Total CR distribution
fer(ry B) = [(fsn(E)) + fis(E, D)| x I'(r, E, D)

Injection Injection
by SNe by winds
(Mitchell et al  (Menchiari et
2024) al 2024)

Credit: Yannick Akar
(https://app.astrobin.com/i/p8ik3p?r=0)

Interstellar
Medium

(A. Mitchell et al 2024)

Three cases of
different diffusion
coefficient
considered

y

;
* Kolmogorov

* Kraichnan

e Bohm
\
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Emission from-YMSCs
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Neutrino emission (| b] <5“°)" "
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Integrated neutrino emission

(Kolmogorov case — Only emission from YMSCs) e ~\
—en Integrated all flavor

-15.07" | neutrino emission
(E>1 TeV)
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y—ray emission (15°<£<125°h) |

* Hatched band: Galactic CR emission [®...: no hardening considered] (Vecchiotti et al 2025)
* Grey Band: Total neutrino flux (¢, .= ¢.., + d..)

 Colored band + solid line: contribution from YMSCs (Quartile: 25, 50, 75)

> o /b, (1 TeV)=50% for Kolmogorov

> o, /b, (1TeV)=30% for Kraichnan

> o, /b, (1TeV)=150% for Bohm
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Conclusions

**Importance of YMSCs as high energy sources
has constantly growing in the last decades

*¢* Contribution to the neutrino emission
ranging within 10-60% at 10 TeV.

+»* Contribution to the diffuse gamma-ray
emission ranging within 30-150% at 1 TeV.

Future steps

» Evaluate how many YMSCs are statistically
expected to be detected by KM3NeT

-
it:-astroanarchy.blogspot.com)







Synthetic YMSCs population (1) 0 Fiskanw ot o, (3018)

CIuster age
dNsc = distribution

YMSC distribution function: &sc(Msc,t,r,0) = T ocdtdrdd = f(Msc)p(t)p(r,0) . 3°°§

400

200 F

= Cluster IMF: f(Mgc) < Mg>* [2.5 - 6.3x10% M ] (Piskunov et al, 2018)

. . . . . 100
= Cluster radial distribution follow giant molecular cloud (Hou & Han 2014)
= Local cluster formation rate: y = 1.8 Myr kpc? (Bonatto et al 2011) of : . > ,
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Stellar population in YMSC

O

o Total number of stars:

My max
fM * ;nin f* ( M*> dM*

M max
fM* ;nin M*f*(M*) dM*

N, = AMy. where A=

Stellar initial mass function (IMF) according to Kroupa (2001)
Maximum stellar mass is 150 M

All stars that have left the main sequence at a time equal to
the age of the cluster are removed, with exception of WR
stars (t;5 <t <t;;+0.3Myr and M >25M_)

Stellar wind power (L, ,,) and mass loss rate (M,) calculated
using empirical formulae (see back up slides)

Cluster wind luminosity and mass loss rate obtained by
summing all L, ,, and M,

Stars exploded as SN are considered for CR production and
for the dynamic of the system
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Stellar wind physics"

- Mass loss rate OB-type stars (M, ) by Nieuwenhuijzen et al. (1990) = g

M L M R
log [ —* | = —14.02 + 1.241oe | == 0.16 log * 0.81 [ ==
e (M:a}'l'l) - o8 (L:a) N ve (M:a) " (Ra

- Wind luminosity OB-type stars [stellar winv speed v, ,, by
Kudritzki & Puls (2000)]

1 .
Ly, = =M, {C(Te)”
*, D *{(eﬂ)[ R*

2GM, (1 - L*/LEdd)”
| ] 2

Vs w

- Mass loss rate WR stars (M*,WR) by Nugis & Lamers (2000)

1.20 1.73 0.47
Ao — 10=110 [ LewR Yk Zwr) ' Mo
= Lo Yo Zo) w

- Wind speed for WR is kept constant to 2000 km/s

Cluster wind luminosity and mass loss rate
calculating by summingall L, ,, and M,

)
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= Nieuwenhuijzen et al. (1990)
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Diffuse y-ray emission (GDE) GDE data: Fermi-LAT, ARGO and LHAASO.
ROI1: 15°<glon<125°, |glat|<5°
ROI2: 125°<glon<235°, |glat|<5°

Note: GDE data are provided after masking known detected sources (TeVCat+LHAASOcat)
We define a similar mask for our simulations

Circles: LHAASO mask; Shaded grey regions: our defined masks

(1) Mask crowded
OO0 O O O OO UW < region of the plane
O, . O O , ~ | (only roI1)

120 100
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=

GLON [deg] " 2) 5 sigma mask:

11000,00 ot el e
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- 120 100 . @100 TeV
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— 5
g OO
= nOO O O O OUW { 3) Final mask
3. O | _O |
12n 100 80 60 40 20
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CR accelerated by YMSC D @
—— E,=1.0 GeV
10°4 - — = = E,=100.0 GeV
AN Ep=1.0 TeV
h E,=100.0 TeV
. . \ P
Morlino et al. (2022): CRs accelerated at the wind TS ) \ i
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CR accelerated by SNe

Mitchell et al. (2024): CRs accelerated by SNe in one advection time

3§ nbu2 p ~Ssn B
fSnr(p) — — Sz 5 C P/ Pmax
dr A(mpc)*es \mye

(fsnr(p» = ﬂﬁs(mpc) (mi) | e_p/pmax

pC

Esn LW’C B : R
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