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The diffuse neutrino flux

Single Power Law (This work)
- Broken Power Law (This work)
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*[ceCube has seen a diffuse high-energy neutrino emission consistent with a power-law spectrum
 The nature of the sources (GRBs, blazars, TDEs, etc.) remains unknown
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 The nature of the sources (GRBs, blazars, TDEs, etc.) remains unknown
«y-ray background points to y-ray opaque sources as major contributors to the diffuse flux
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NGC 1068

—LO0G,,(P,yer) lceCube Science 2022

*‘NGC 1068 is the most significant source in the Northern Sky

-Example of a y-ray obscured source

‘Evidence of acceleration of cosmic rays
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Neutrino emission from S
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e Point source searches revealed
additional Seyfert galaxies, all y—
ray opaque.

« CGCG 420+015 model expectation
IS below the fits

* Numerical simulations of strongly

magnetized turbulence have
trouble explaining the reported
fluxes
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Modeling neutrino emission in AGIN cores
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Cosmic accelerator  Target: X-ray photons

with neutrinos >100 TeV protons have enough energy

for & production

Hot corona

A y-ray opaque source
points to dense
photon fields providing

y-ray reprocessing

The disk-corona

* model may provide
such an environment ~ S

Wilkins & Gallo 2015
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AGNs - the multimessenger picture
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AGNs - the multimessenger picture
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Parameter scan - NGC 1068
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Parameter scan - NGC 4151
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Parameter scan - NGC 4151
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Parameter scan - NGC 4151
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Parameter scan - CGCG 420+015

Intrinsic X-ray luminosity: 7.1 X 10* erg s™! (Suzaku)
6.8 X 10*! erg s™! (NUSTAR)
Mgy = 2.0 X 10° M
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Can neutrinos provide some insight??
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AGN contributions to the diffuse neutrino flux

Compare two models:
RS17:R = 17.3R,, Pcp/Py, =048, 1., = 87 1077

—==- RS17 [1 Power-law fit (IceCube 2025)
530 4~ Segmented fit (IceCube 2025)

We use the Ueda et al. 2014 formalism for the
source distribution function and fit for parameters
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AGN contributions to the diffuse neutrino flux
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= RH530

1 Power-law fit (IceCube 2025)
4 Segmented fit (IceCube 2025)
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AGN contributions to the diffuse neutrino flux

Compare two models:

RS17: R = 17.3Rg, Pcr/Py, = 048, n,,, = 87 106

We use the Ueda et al. 2014 formalism for the
source distribution function and fit for parameters

T
T
i)
=
-
« Low Ly sources provide most of the diffuse flux %
 Sources in z ~ 0.5 — 1.5 contribute significantly =

-

to the diffuse flux A

e RS17 contributes to 10-20 TeV neutrinos 107"

=== RS17
= RH530

1 Power-law fit (IceCube 2025)
4 Segmented fit (IceCube 2025)

* RS30 adjusts well to the 1 TeV - 100 TeV data 10?
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Summary

* Neutrino emission points to efficient hadronic particle acceleration

* Disk-corona model can explain the multi-messenger emission

o Acceleration sites are compact, with pressure ratios > 10 %

* Large uncertainties remain
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Summary

* Neutrino emission points to efficient hadronic particle acceleration

* Disk-corona model can explain the multi-messenger emission

o Acceleration sites are compact, with pressure ratios > 10 %

* Large uncertainties remain

Going forward

* Increased neutrino statistics can give further insight on proton maximum
energies

* MeV observations are crucial to constrain the y-ray cascades

* Diffuse neutrino flux measurements need additional input from AGN point
sources to improve local distribution function fits
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