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• -ray background points to -ray opaque sources as major contributors to the diffuse fluxγ γ



NGC 1068
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IceCube Science 2022

•NGC 1068 is the most significant source in the Northern Sky


•Example of a -ray obscured source


•Evidence of acceleration of cosmic rays

γ



Neutrino emission from Seyfert galaxies
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• Point source searches revealed 
additional Seyfert galaxies, all 
ray opaque.

• CGCG 420+015 model expectation 
is below the fits 

• Numerical simulations of strongly 
magnet ized turbulence have 
trouble explaining the reported 
fluxes

γ−

IceCube 2024, IceCube 2025
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γ

Hot corona

Wilkins & Gallo 2015

The disk-corona 
model may provide 

such an environment Accretion disk
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Cosmic ray (CR) acceleration 

•Stochastic particle acceleration in  
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•CR energy cutoff at  PeV energies
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Targets 

Coronal X-rays and protons 
(main targets for  and )pp pγ

Cosmic ray (CR) acceleration 

•Stochastic particle acceleration in  
the corona


•CR energy cutoff at  PeV energies
∼

Features 

Non-power law neutrino spectra


Hadronic explanation for high-
energy -raysγ
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Upper limits from Fermi and 
future MeV measurements can 

help with the degeneracy



103 104 105 106

E∫ [GeV]

10°9

10°8

10°7

10°6

E
2 ∫
©

∫ µ
+

∫̄ µ
[G

eV
cm

°
2

s°
1

sr
°

1 ]

RS17

RS30

Power-law fit (IceCube 2025)

Segmented fit (IceCube 2025)

11

Compare two models:

RS17: 

RS30: 

R = 17.3RS, PCR/Pth = 0.48, ηtur = 87
R = 30RS, PCR/Pth = 0.01, ηtur = 10

AGN contributions to the diffuse neutrino flux

We use the Ueda et al. 2014 formalism for the 
source distribution function and fit for parameters
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AGN contributions to the diffuse neutrino flux

We use the Ueda et al. 2014 formalism for the 
source distribution function and fit for parameters

• Low  sources provide most of the diffuse flux


• Sources in  contribute significantly 

to the diffuse flux 

LX

z ≈ 0.5 − 1.5
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Compare two models:

RS17: 

RS30: 

R = 17.3RS, PCR/Pth = 0.48, ηtur = 87
R = 30RS, PCR/Pth = 0.01, ηtur = 10

AGN contributions to the diffuse neutrino flux

We use the Ueda et al. 2014 formalism for the 
source distribution function and fit for parameters

• RS17 contributes to 10-20 TeV neutrinos


• RS30 adjusts well to the 1 TeV - 100 TeV data

• Low  sources provide most of the diffuse flux


• Sources in  contribute significantly 

to the diffuse flux 

LX

z ≈ 0.5 − 1.5
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Summary
• Neutrino emission points to efficient hadronic particle acceleration

• Disk-corona model can explain the multi-messenger emission


• Acceleration sites are compact, with pressure ratios 


• Large uncertainties remain
≳ 10 %
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• Neutrino emission points to efficient hadronic particle acceleration

• Disk-corona model can explain the multi-messenger emission


• Acceleration sites are compact, with pressure ratios 


• Large uncertainties remain
≳ 10 %

Going forward 
• Increased neutrino statistics can give further insight on proton maximum 

energies


• MeV observations are crucial to constrain the -ray cascades

• Diffuse neutrino flux measurements need additional input from AGN point 

sources to improve local distribution function fits

γ


