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For references see Figure 1
of Bustamante and Connolly,
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Motivation
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Motivation

FASER Collaboration,
Phys.Rev.Lett. 134 (2025) 21, 211801
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Motivation: close the gap
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lceCube Collaboration. 2024. “Replication Data for: Searching for Decoherence from Quantum Gravity at the lceCube South Pole Neutrino Observatory.” Harvard Dataverse. https://doi.org/10.7910/DVN/9SWGYQN
lceCube Collaboration, Nature Phys. 20 (2024) 6, 913-920

HOW? Total number of events: 305735

T = 7.6 years (x28 IceCube band at higher energies)
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HOW? Total number of events: 305735
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Neutrino journey: generation




Initial fluxes
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Initial fluxes
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Neutrino journey: transport




Neutrino journey: transport
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Transmission probability
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Absorption: normalization
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Neutrino journey: detection




Neutrino journey: detection

Detection process
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Neutrino journey: detection

Detection process
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Neutrino journey: detection

Detection process
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IceCube data release (9.,

lceCube Collaboration, Nature Phys. 20 (2024) 6, 913-920

Value at Best Fit (n = 0)
Parameter Prior Phase State
Perturbation| Selection
Detector Parameters
DOM Efficiency 0.97 £ 0.10 0.96 0.96
Bulk Ice Gradient O 0.0+ 1.0* -0.08 -0.07
Bulk Ice Gradient 1 0.0+ 1.0" 0.58 0.60
Forward Hole Ice (p2) -1.0+10.0 -3.32 -3.30




Results
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Results: norm
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Results: norm
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Results: norm + tilt
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Results: norm + tilt
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Take home message

Determined the neutrino-nucleon cross section around TeV.

muon data range ~ [500 GeV — 10TeV]

neutrino influence range ~ [150 GeV — 50 TeV]

Closed the unknown energy gap!

Competitive precision for the TeV energy range.
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Neutrino-nucleon cross section extraction around the TeV

Backup slides




lceCube Collaboration. 2024. “Replication Data for: Searching for Decoherence from Quantum Gravity at the lceCube South Pole Neutrino Observatory.” Harvard Dataverse. https://doi.org/10.7910/DVN/9SWGYQN

1D distribution of data
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FluxX: neutrino measurements

Atmospheric Neutrino Spectrum
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Flux: effective normalizations
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Zenith angle (°)

Absorption: tilt pattern
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Our priors

Analysis: Priors

Parameter Symbol [unit] Prior Boundaries
. ] v-nucleon cross section
Data Release analysis priors Normalization of oy Mo 1[0.05, 20] [0.05, 20]
lceCube Collaboration, Nature Phys. 20 (2024) 6, 913-920 Spectral shift of ogm Bo U[-2, 2] -2, 2]
Pivot point of osm Egs [TeV] U[0.1, 50] (0.1, 50]
Value at Best F'it (n — O) daemonflux atmospheric flux
Parameter Prior Phase State K node at 158 GeV K55 N0, 1] -2, 2]
Perturbation| Selection K™ node at 158 GeV K55 N1, 1] -2, 2]
7" node at 20 TeV T N[0, 1] -2, 2]
Detector Parameters 7w~ node at 20 TeV T2 T N0, 1] -2, 2]
DOM Efficiency 0.97 & 0.10 0.96 0.96 K™ node at 2 PeV K3p N0, 1] -2, 2]
Bulk Ice Gradient 0 0.0+ 1.0 -0.08 -0.07 LR bk Kop N0, 1] 1.5, 2]
Bulk Ice Gradient 1 0.0+ 1.0* 0.58 0.60 7' node at 2 Pev Tap N, 1] 2,2
Forward Hole Ice (p2) -1.0£10.0 -3.32 -3.30 ™ node at 2 PeV Tap N, 1] 2,2
proton node at 2 PeV Da2p N0, 1] -2, 2]
Conventional Flux Parameters neutron node at 2 PeV nop N[0, 1] -2, 2]
Normalization(®conwv.) 1.04+0.4 1.10 1.10 Cosm?c ray spectrum 1 G5 N, 1] -4, 4]
Spectral Shift (Acons.) | 0.0040.03 0.07 0.07 Cosmic ray spectrum 2 GoL N, 1 4,4
Atmospheric Density 0.0+1.0 -0.10 -0.11 oo rey spectium 5 GoEs N, 1 4,4
Bars Wi Comi e il
Barr WP 0.00+0.40 0.01 0.01 Cosmic rai sgectrum 6 GSF5 ./\/'[O’ 1] [:4, 4]
g:g ¥¥ 888i8§8 _882 _882 Conventional Ztmospheric flux | |
B 20 e ot T
Barr ZP 0.00£0.12 -0.02 -0.02 Astrophyeical diffuse fiux ’ ’
Astrophysical Flux Parameters Astro normalization Pastro [107'%/GeV/sr/s/cm?]  N0.79, 0.36] [0, 3.0]
: : _ Astro spectral shift AYastro N0, 0.36] -2, 2]
Igormalizg’;:.(;n(iastm,) 0.79+ 0.36* 0.84 0.84 Detector response
pectral Shift (Aastro.)  |0.00+ 0.36 -0.02 -0.01 DOM Efficiency €dom N[0.97,01]  [0.94, 1.03]
Cross sections Bulk Ice Gradient 0 bo N0, 1] -3, 3]
Bulk Ice Gradient 1 b1 N0, 1] -3, 3]
Cross section (0, ) 1.00+0.03 1.00 1.00 Forward Hole Ice P N1, 10] -5, 3]
Cross section (o7, ) 1.0040.075 1.01 1.01
Kaon re-interaction (cx4)| 0.041.0 -0.16 -0.14
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Analysis: Priors

Latest IceCube analysis priors
lceCube Collaboration, Phys.Rev.D 110 (2024) 9, 092009

Our priors

Nuisance Central | 10 width Allowed || Pull Null | Pull Best Pull Difference
parameter value| of prior range|| Fit ()| Fit (o) ||Null-Best Fit| (o)
Overall normalization (Sec. IIIC)
Norm 1.00 | 0.2 0.10,3.00{] -0.05] 0.41| 0.46
Local response of DOMs (Sec. III F)
DOM efficiency 1.00 0.10| 0.97,1.06 0.02 0.03 0.01
Forward hole ice -1.00 10.00| -5.35,1.85 0.28 0.27 0.01
Bulk ice (Sec. IIIE)
Amplitude 0 0.00 1.00| -3.00,3.00 0.64 0.69 0.05
Amplitude 1 0.00 1.00| -3.00,3.00 1.36 1.19 0.17
Amplitude 2 0.00 1.00| -3.00,3.00 1.35 1.42 0.07
Amplitude 3 0.00 1.00| -3.00,3.00 0.74 0.75 0.01
Amplitude 4 0.00 1.00| -3.00,3.00 1.12 1.16 0.04
Phase 1 0.00 1.00| -3.00,3.00 -1.60 -1.67 0.07
Phase 2 0.00 1.00| -3.00,3.00 -0.59 -0.54 0.05
Phase 3 0.00 1.00| -3.00,3.00 -0.21 -0.08 0.13
Phase 4 0.00 1.00| -3.00,3.00 0.10 0.27 0.17
Conventional flux (Sec. IITA)
Atm. density (patm) 0.00 1.00| -3.00,3.00 -0.48 -0.55 0.07
Kaon energy loss (0k_Air) 0.00 1.00| -3.00,3.00 0.66 0.51 0.15
g KTSSG 0.00 1.00| -2.00,2.00 0.93 0.89 0.04
= KiSSG 0.00 1.00| -2.00,2.00 0.29 0.24 0.05
S TooT 0.00 1.00| -2.00,2.00 0.15 -0.06 0.21
954 Ton 0.00 1.00| -2.00,2.00 0.17 -0.03 0.20
o Kop 0.00 1.00| -2.00,2.00 0.28 0.09 0.19
§ Kop 0.00 1.00| -1.50,2.00 0.24 0.01 0.23
g wfp 0.00 1.00| -2.00,2.00 -1.50 -1.23 0.27
T T,p 0.00 1.00| -2.00,2.00 -1.08 -0.85 0.23
P2p 0.00 1.00| -2.00,2.00 -0.25 -0.18 0.07
nap 0.00 1.00| -2.00,2.00 -0.17 -0.15 0.02
El GSF1 0.00 1.00| -4.00,4.00 -0.33 0.10 0.43
2 GSF» 0.00 1.00f -4.00,4.00 -0.12 -0.28 0.16
5 GSF3 0.00 1.00| -4.00,4.00 -0.12 -0.05 0.07
8. GSF4 0.00 1.00| -4.00,4.00 -0.13|  -0.25 0.12
o GSF5 0.00 1.00f -4.00,4.00 1.82 2.24 0.42
O GSFs 0.00 1.00| -4.00,4.00 -1.17 -1.31 0.14
Non-conventional flux (Sec. III B)
®HE/10718GeV—lsr—1s7lem =2 0.787 0.36| 0.00,3.00 0.25 0.61 0.36
log; of pivot energy, E‘glrgak/(}e\/ - - 4.00,6.00 *4.25 *4.31| N/A, see caption
A~HE | tilt from -2.5 0.00 0.36| -2.00,2.00 2.62 2.39 0.23
A~EE | tilt from -2.5 0.00 0.36| -2.00,2.00 -0.22 0.10 0.21
Neutrino attenuation (Sec. III D)
v attenuation 1.00 0.10| 0.82,1.18 0.12 -0.14 0.26
v attenuation 1.00 0.10| 0.82,1.18 0.04 -0.02 0.06

Parameter Symbol [unit] Prior Boundaries
v-nucleon cross section
Normalization of ogm No U[0.05, 20] [0.05, 20]
Spectral shift of ogm Bo Ul-2, 2] -2, 2]
Pivot point of osm Egs [TeV] U[0.1, 50] (0.1, 50]
daemonflux atmospheric flux
K™ node at 158 GeV Kieq N0, 1] -2, 2]
K™ node at 158 GeV Ko N[0, 1] -2, 2]
7" node at 20 TeV T N[0, 1] -2, 2]
7w~ node at 20 TeV TooT N[0, 1] -2, 2]
K™ node at 2 PeV K5 N0, 1] -2, 2]
K™ node at 2 PeV Ko N[0, 1] [-1.5, 2]
" node at 2 PeV o N[0, 1] -2, 2]
7w~ node at 2 PeV Top N[0, 1] -2, 2]
proton node at 2 PeV D2p N0, 1] -2, 2]
neutron node at 2 PeV nap N0, 1] -2, 2]
Cosmic ray spectrum 1 GSF1 N0, 1] -4, 4]
Cosmic ray spectrum 2 GSF, N0, 1] -4, 4]
Cosmic ray spectrum 3 GSF3 N0, 1] -4, 4]
Cosmic ray spectrum 4 GSF4 N[0, 1] -4, 4]
Cosmic ray spectrum 5 GSF's N[0, 1] -4, 4]
Cosmic ray spectrum 6 GSFg N0, 1] -4, 4]
Conventional atmospheric flux
Atmospheric density Patm N0, 1] -3, 3]
Kaon reinteraction O K-Air N0, 1] -3, 3]
Astrophysical diffuse flux
Astro normalization Pastro [1071%/GeV /sr/s/cm?]  N0.79, 0.36] [0, 3.0]
Astro spectral shift AYastro N0, 0.36] -2, 2]
Detector response
DOM Efficiency €dom N10.97, 0.1] [0.94, 1.03]
Bulk Ice Gradient 0 bo N0, 1] -3, 3]
Bulk Ice Gradient 1 b1 N0, 1] -3, 3]
Forward Hole Ice D2 N[-1, 10] -5, 3]
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