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electromagnetlc cascades — cross sections

photon-photon 10-25 interactions

interactions

10—27

10—29

o (cm?)

10—31

10—33

107{pm 1013 1015 107 1019

s (eV?)



electromagnetic cascades - cross sections

-25
the usual 10
processes, i.e.
pair production, 1077’
inverse

Compton... E10—29

S

@)

10—33

107{o1 1013 1015 1077 1019

s (eV?)




electromagnetic cascades - cross sections

-25
the usual 10
processes, i.e.
pair production, 1077’
inverse

Compton... E10—29

S

@)

_-_-—-_-—-—-—--
— — —
.—--—---—"- "
—
.

10—33

ph.:)tons
1073511 I
10 1013 101° 101/ 101°
s (eV?)




electromagnetic cascades - cross sections 5

production of
heavy leptons
and hadrons

— mtn” —-— eete~ |
— K*K~ —-— eutu- -
! /

1073 g1 1015 1017 105

s (eV?) (O

Alves ista, Sdnchez-Conde, 2025)




electromagnetic cascades - cross sections 6

neutrinos!
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neutrino & y-ray fluxes - in propagation (usually) 7
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neutrino &y-ray fluxes - in propagation (usually) :
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electromagnetic cascades - cosmological rates §

cosmic radio background (CRB)
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electromagnetic cascades - new cosmological rates
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electromagnetic cascades - new cosmological rates
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these scenarios in CRPropa —

MC code to simulate

- new decay plugin: astroparticle propagation!
CRPYTHIAxDecays /PI’O pa
(synergy between CRPropa & PYTHIA) (alves Batista+, 2022)
- new interaction plugins: MC event generator
for high-energy
EMMuonPairProduction physics collisions!

EMChargedPionPairProduction
EMTauonPairProduction
EMElectronMuonPairProduction

) PYTHIA

=t

(Bierlich+, 2022)


https://github.com/GDMarco/CRPYTHIAxDecays
https://github.com/GDMarco/EMMuonPairProduction
https://github.com/GDMarco/EMChargedPionPairProduction
https://github.com/GDMarco/EMTauonPairProduction
https://github.com/GDMarco/EMTauonPairProduction

simulations - gamma-ray propagation

sources characterised by Eyonoy > 10'%eV and z > 0.1

observables about the emerging
neutrinos with E,, > 10 PeV
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MONO sources — emerging v energy spectra
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MONO sources — emerging v energy spectra 2
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MONO sources — emerging v energy spectra 1
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MONO sources — emerging v energy spectra

19

— —-15| z=0.15 | z=0.5
310 \
£107Y7 | / / peaks
E 10-19 z and energy
S dependent
N% 10721 | —— 10 eV
Wi —— 1020 eV
10723 —— 102t eV
—— 10%? eV
—~10-15] z=3 | z=5 z=10 1023 eV
> 10 10235 eV
L 1n0-17
%l;} 10-19. /\ /—\\—- ‘m
Nb 10—21,
LLI3
10—23 ‘ ‘ | | | ‘1
107 1010 1013 107 1010 1013 107 1010 1013
E, (GeV) E, (GeV) E, (GeV)

(Di Marco, Alves Batista, SGnchez-Conde, 2025)



MONO sources — emerging v energy spectra 2
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ps. emerging v energy spectra - propagation
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ps. emerging v energy spectra - propagation
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mono sources - flavour probabilities 2

vV e (Di Marco, Alves Batista, Sdnchez-Conde, 2025)
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https://github.com/KM3NeT/Neurthino.jl

mono sources - flavour probabilities
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mono sources - flavour probabilities
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mono sources - flavour probabilities

o
o

o
N
event density

E, =10%%eV, z = 10

"most likely
muonic”

E, = 10%%eV,z =7

26

0.8

o
o

o
N
event density

0.2

(Di Marco, Alves Batista, SGnchez-Conde, 2025)
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neutrino & y-ray fluxes — at sources? 2
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neutrino & y-ray fluxes - in active galaxy? 2
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leptonic v production - in active galaxies?

Evidence for neutrino emission from the nearby active
galaxy NGC 1068

IceCube Collaboration®

X-RAY EMISSION

‘%\ ; *E-mail: analysis@icecube.wisc.edu.

We report three searches for high energy neutrino emission from astrophysical

objects using data recorded with IceCube between 2011 and 2020. Improve-

ments over previous work include new neutrino reconstruction and data cali-

ACCRETION DISK . o4s s .
BNEALLING MATERIAL) bration methods. In one search, the positions of 110 a priori selected gamma-

CORONA ray sources were analyzed individually for a possible surplus of neutrinos over

BLACK HOLE

(Halzen, 2023) atmospheric and cosmic background expectations. We found an excess of

79122 neutrinos associated with the nearby active galaxy NGC 1068 at a sig-

nificance of 4.2 0. The excess, which is spatially consistent with the direction
of the strongest clustering of neutrinos in the Northern Sky, is interpreted as

direct evidence of TeV neutrino emission from a nearby active galaxy. The in-

ferred flux exceeds the potential TeV gamma-ray flux by at least one order of

magnitude. .
(Abbasi+, 2024)



leptonic v production - in active galaxies?

Evidence for neutrino emission from the nearby active
galaxy NGC 1068

IceCube Collaboration®
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magnitude.



leptonic v production - in hot corona
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leptonic v production - rates in corona >
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leptonic v production - energy spectra ;
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concluding with some prospects

In science: PN
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heavy leptons and hadrons production in EM cascades might: _
qq N p,eyv’v
. >\ 8%

- alter expected gamma-ray and neutrino balance; X

(cosmogenic? exotic physics searches, e.g. dark matter?)
- leptonically produce neutrino in source, e.g. AGNSs;
in simulation framework:

synergy between CRPropa & PYTHIA simulation codes,
(useful in other frameworks?) +
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cosmological background photons
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EBL with redshift

evolution trace of
extragalactic
sources' emission
between the IR to the UV

(- largely uncertain at
higher redshifts

- lots of models)

€2dn/de [eV/m3]
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neutrino & y-ray fluxes — super heavy dark matter -
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neutrino & y-ray fluxes —cosmic string
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mono sources - energy fraction
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mono sources — v distance travelled

in the highest energy
sources cascading effects
might happen
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In source — vV energy spectra .
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interaction rates - cosmological

computed tables at:
EMCascadePlugins-data
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(Di Marco, Alves Batista, SGnchez-Conde, 2025)
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https://github.com/GDMarco/CRPropa3-data/tree/EMCascadePlugins-data
https://github.com/GDMarco/CRPropa3-data/tree/EMCascadePlugins-data
https://github.com/GDMarco/CRPropa3-data/tree/EMCascadePlugins-data

interaction rates - cosmological
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CRPYTHIAxDecayS muon decay -
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