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Blazars: Powerful and Rare Objects
The common model for blazar emission is that these sources are quasars in which a relativistic jet is pointing 

at the observer or very close to the observer’s line of sight.

Blazars are rare objects. Even when combining data from multiple surveys, only about 6,000 sources 

exhibit blazar-like features among an estimated 100 to 200 billion galaxies.

Why blazars are interesting ?
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Why blazars are interesting ?

 High powers: most powerful “non-explosive” sources in the Universe ( )  

 Relativistic jets: emission is strongly Doppler amplified 

 The powerful jets of blazars are powered by accretion onto supermassive black holes 

 Fast variability/small emitting region;  

 Broadband emission: from radio to VHE -ray 

 Blazar emission is often highly polarized, in the radio, optical, and X-ray bands

 Dominant sources in HE -ray sky: of 4FGL-DR3 sources are blazars.

 Blazars are important sources in MM astronomy, being linked to VHE neutrinos

∼ 1049 erg/s

R ≤ c tvar /(1 + z)

γ

γ ∼ 55 %



Astrophysical Messengers

Our knowledge of the Universe relies on four cosmic messengers:
  Gravitational waves 
 Photons 
 Cosmic rays 
 Neutrinos 

The information from these messengers spans a 
vast range of energies and frequencies, covering 
50 orders of magnitude
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  Gravitational waves 
 Photons 
 Cosmic rays 
 Neutrinos 

Blazar emissions can be investigated by detecting photons 
with energies ranging from radio to HE and VHE γ-rays. 

Blazars are associated with VHE neutrinos.

What is the origin of the multiwavelength 
and multimessenger emission?
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Origin of MW and MM Emission: Protons
The double hump structure of the blazar broadband SED: the low-energy component usually peaks between far infrared and X-
rays, while the high-energy (HE) component is observed between X-rays and very high-energy (VHE) γ-rays.
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Origin of MW and MM Emission: Protons

Proton emission

synchrotron radiation

The double hump structure of the blazar broadband SED: the low-energy component usually peaks between far infrared and X-
rays, while the high-energy (HE) component is observed between X-rays and very high-energy (VHE) γ-rays.
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Neutrino Observations of Blazars

1. Key Observational Milestones 

– IceCube-170922A / TXS 0506+056 (2017): A TeV neutrino coincident with a GeV–TeV flare from TXS 0506+056 
(z=0.336). Follow-ups by Fermi-LAT, MAGIC, Swift, and NuSTAR revealed multi-band enhancement; strong evidence for 
hadronic interactions. 

–Archival TXS 0506+056 excess (2014–2015): Cluster of 13±5 neutrinos over  days without γ-ray flare. 

–Other candidates: PKS 1502+106, PKS 0735+178, PKS 1424–418, GB6 J1040+0617…… 

2. Significance 

–Confirms hadronic acceleration in relativistic jets. 

–Blazars as potential sources of high-energy cosmic neutrinos. 

–Supports contribution of blazars to diffuse astrophysical neutrino background. 

–Demonstrates the power of multimessenger astronomy: neutrinos + γ-rays + X-rays + optical.
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Multiwavelength + Multimessenger data



Multiwavelength + Multimessenger data
Petropoulou et al. 20203HSP J095507.9+355101
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Sahakyan et al. 2023 



Computational Challenges and ML-based Solutions
Traditional Modeling : 

Frequent likelihood evaluations, making computations time-consuming. 

Models computed for each dataset, resulting in redundant and costly 

computations. 

For Bayesian fitting, models must be evaluated - times.104 105

Computation Time Estimates (8 cores) : 

SSC / EIC model: ~30 sec → 3.5 – 35 days 

Hadronic model: ~90 sec → 10 –100 days
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Machine Learning for Accelerated Model computations: 

Efficient: avoids exhaustive parameter space exploration. 

Reusable across different datasets after training. 

Several orders-of-magnitude faster evaluations.

References : 

Bégué, Sahakyan et al., ApJ, 963, 71 (2024) 

Sahakyan, Bégué et al., ApJ, 971, 70 (2024) 

Sahakyan, Bégué et al., ApJ, 990, 222 (2025)
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Convolutional Neural Network
Why CNN? 

Structured Data Handling: Ideal for 1D structured inputs like spectra and 

time-series. 

Pattern Recognition: Detects local emission features 

Parameter Scalability: Scales well with complex, high-dimensional inputs.

Architecture Overview 

Input: 10 physical parameters 

Dense  5×Conv1D  MaxPool  Flatten  Dense 

Output: 150 independent  observables
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from D. Bégué (https://www.youtube.com/watch?v=L3KxgWYghHE)
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Training CNN Surrogates for Hadronic Blazar Models

CNN trained on 7 million spectra generated using the SOPRANO 
code. 

Training spans 10-dimensional parameter space with broad, 
physically motivated ranges.

parameter  
sets SOPRANO photon  

spectrum

CNN

80 % 10 %10 %

testtrain validation

Sahakyan, Bégué et al., ApJ, 990, 222 (2025)



IceCube-170922A— TXS 0506+059

 IceCube, Fermi-LAT, MAGIC, AGILE et al, 2018 



Parameter Estimation in hadronic Modeling
Modeling the SED of TXS 0506+056 during the IceCube-170922A neutrino 

event using a convolutional neural network trained on hadronic models.

Model parameters for TXS 0506+059

Posterior Distributions from CNN-based Fit

Sahakyan, Bégué et al., ApJ, 990, 222 (2025)
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Neutrinos from PKS 0735+178

IceCube-211208A neutrino 
with an estimated energy of 

172 TeV
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MW lightcurve of PKS 0735+178

Sahakyan, Giommi, Padovani, et al., MNRAS, 2023



MW lightcurve of PKS 0735+178 and origin of the emission

Sahakyan, Giommi, Padovani, et al., MNRAS, 2023



Parameter Estimation in hadronic Modeling
Modeling the SED of PKS 0735+178 during the IceCube-211208A neutrino 

event using a convolutional neural network trained on hadronic models.

Model parameters for PKS 0735+178

Posterior Distributions from CNN-based Fit

Sahakyan, Bégué et al., ApJ, 990, 222 (2025)
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Traditional models of blazar emission—SSC, EIC, and hadronic—have significantly advanced. 

However, full parameter space exploration remained computationally expensive, especially when 

accounting for particle injection and cooling. 

We developed machine learning surrogates for each model class using convolutional neural networks. 

These accurately reproduce the spectra across wide parameter ranges. The hadronic model—previously 

requiring extensive computational resources for full parameter inference—can now be explored within 

minutes. 

This enables fast, scalable, and statistically robust modeling of blazar emission, including during 

multimessenger events. 

The growing volume and quality of multiwavelength and multimessenger data from modern 

observatories, when combined with machine learning, are poised to significantly enhance our 

understanding of blazar physics. 

Conclusions


