Modeling of blazar emission: multiwavelength
and multimessenger tit powered by

’

convolutional Neural Network
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Blazars Pow rful and Rare ObJ ects

‘The ¢common model for blazar emission is that t}lese sources are quasars in which a relat1v1st1c jet 1s pomtmg
| ' at the observer or very close to the observer S hne of sight.

Blazars are rare objects. Even when chbinin'g data : from mu'ltiple Surveys, only.about 6,000 sources

exhibit b'la_z'ar—l'ike features e.miongan'esimated 100 to 200 billion galaxies.

Why blazars are ihtere_sting ?




Blazars Powgrful and Rare Ob] ects

The common model for blazar emission is that these sources are quasars in which a relat1v1st1c jet 1s p01nt1ng
| at the observer or Very close to the observer’s llne of sight.

Blazars are rare objects. EVén when chb1n1ng data from mu‘ltlple Surveys, onlyabout 6,0.()O'source_s
| exhibit blazar-like features aniongan'es‘imated 100 to 200 billion galaxies.
Why blazars are interesting ?

H1gh powers: most powerful non-explosive” sources in the Unlverse (~ 10% erg/s)

- Relativistic jets: emission is strongly fj“lfer~~amp11f1ed '

) Broadband emission: from radio to VHE y-ray

Blazar emission.is often highly polanzed in the radlo optlcal and X-ray bands
L A

Dominant sources in HE y—ray sky: 9~ 55 % of 4FGL-DR3 sources are blazars.

| Blazars are 1important sources in MM astronomy, being linked to VHE neutrinos



Astrophysical Messengers

: : : [ Gravitational waves The information from these messengers spans a
Our knowledge of the Universe relies on four cosmic messengers: ) : :
A Photons vast range of energies and frequencies, covering
] Cosmic rays 50 orders of magnitude

] Neutrinos

Gravitational waves

Electromagnetic radiation !

.‘Stb-mm IR Opt UV /M Universe not
transparent
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Astrophysical Messengers

: : : ] Gravitational waves The information from these messengers spans a
Our knowledge of the Universe relies on four cosmic messengers: o Photons st sunss of enexuies snd freananeles. covering
b

] Cosmic rays 50 orders of magnitude

[ Neutrinos

Blazar emissions can be investigated by detecting photons
with energies ranging from radio to HE and VHE vy-rays.

Blazars are associated with VHE neutrinos.

Gravitational waves
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Origin of MW and MM Emission: Protons

The double hump structure of the blazar broadband SED: the low-energy component usually peaks between far infrared and X-
rays, while the high-energy (HE) component is observed between X-rays and very high-energy (VHE) y-rays.




Origin of MW and MM Emission: Protons

The double hump structure of the blazar broadband SED: the low-energy component usually peaks between far infrared and X-
rays, while the high-energy (HE) component is observed between X-rays and very high-energy (VHE) y-rays.
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Origin of MW and MM Emission: Protons

The double hump structure of the blazar broadband SED: the low-energy component usually peaks between far infrared and X-
rays, while the high-energy (HE) component is observed between X-rays and very high-energy (VHE) y-rays.
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Origin of MW and MM Emission: Protons

The double hump structure of the blazar broadband SED: the low-energy component usually peaks between far infrared and X-
rays, while the high-energy (HE) component is observed between X-rays and very high-energy (VHE) y-rays.
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Origin of MW and MM Emission: Protons

The double hump structure of the blazar broadband SED: the low-energy component usually peaks between far infrared and X-
rays, while the high-energy (HE) component is observed between X-rays and very high-energy (VHE) y-rays.
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relativistic jet
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Neutrino Observations of Blazars

1. Key Observational Milestones

—IceCube-170922A / TXS 0506+056 (2017): A ~ 290TeV neutrino coincident with a GeV-TeV flare from TXS 0506+056
(z=0.336). Follow-ups by Fermi-LAT, MAGIC, Swift, and NuSTAR revealed multi-band enhancement; strong evidence for

hadronic interactions.
— Archival TXS 0506+056 excess (2014—2015): Cluster of 13+5 neutrinos over ~ 110 days without y-ray flare.
— Other candidates: PKS 1502+106, PKS 0735+178, PKS 1424418, GB6 J1040+0617......

2. Significance
— Confirms hadronic acceleration in relativistic jets.
—Blazars as potential sources of high-energy cosmic neutrinos.
— Supports contribution of blazars to diffuse astrophysical neutrino background.

— Demonstrates the power of multimessenger astronomy: neutrinos + y-rays + X-rays + optical.



Multiwavelength + Multimessenger data




. Multiwavelength + Multimessenger data
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Computational Challenges and ML-based Solutions

Traditional Modeling :

O Frequent likelihood evaluations, making computations time-consuming.
O Models computed for each dataset, resulting in redundant and costly

computations.

O For Bayesian fitting, models must be evaluated 10*-10°times.

Computation Time Estimates (8 cores) :

O SSC/EIC model: ~30 sec — 3.5 — 35 days
O Hadronic model: ~90 sec — 10 —100 days

1072 1072 10° (o b (o 1018 1022
Energy (eV)



Computational Challenges and ML-based Solutions

Traditional Modeling :

107k O Frequent likelihood evaluations, making computations time-consuming.
O Models computed for each dataset, resulting in redundant and costly

computations.

O For Bayesian fitting, models must be evaluated 10*-10°times.

Computation Time Estimates (8 cores) :

o= O SSC/EIC model: ~30 sec — 3.5 — 35 days
| O Hadronic model: ~90 sec — 10 —100 days
. T T L T TR T T
Energy (eV)
Machine Learning for Accelerated Model computations: References :

[ Efficient: avoids exhaustive parameter space exploration. [ Bégué, Sahakyan et al., ApJ, 963, 71 (2024)
[ Reusable across different datasets after training. [ Sahakyan, Bégué et al., ApJ, 971, 70 (2024)
[ Several orders-of-magnitude faster evaluations. [ Sahakyan, Bégué et al., ApJ, 990, 222 (2025)




Parameter Units Symbol Minimum Maximum Type of distribution
Doppler boost - ) 3.5 100 Linear

Blob radius cm R 10145 10'® Logarithmic
Minimum electron injection Lorentz factor — Ye,min 101 10° Logarithmic
Maximum electron injection Lorentz factor - Ye,max 102 108 Logarithmic
Maximum proton injection Lorentz factor - Vp,max 10° 10t Logarithmic
Injection index electrons - Pe 1.7 5 Linear
Injection index protons - Pp 1.6 3.5 Linear
Electron luminosity erg.s L. 1012 10%° Logarithmic
Proton luminosity erg.s” ! L, 10*2 10°2 Logarithmic
Magnetic field G B 1072 1035 Logarithmic




Parameter Units Symbol Minimum Maximum Type of distribution
Doppler boost - ) 3.5 100 Linear

Blob radius cm R 10145 1018 Logarithmic
Minimum electron injection Lorentz factor — Ye,min 101 10° Logarithmic
Maximum electron injection Lorentz factor - Ye,max 102 108 Logarithmic
Maximum proton injection Lorentz factor ~ Yp,max 10° 10 Logarithmic
Injection index electrons - Pe 1.7 5 Linear
Injection index protons - Pp 1.6 3.5 Linear
Electron luminosity erg.s L. 1042 104 Logarithmic
Proton luminosity erg.s” ! L, 10*2 10°2 Logarithmic
Magnetic field G B 1072 1035 Logarithmic

Gasparyan, Bégué, Sahakyan 2022
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Doppler boost - ) 3.5 100 Linear

Blob radius cm R 10145 10'® Logarithmic
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Maximum electron injection Lorentz factor - Ye,max 102 108 Logarithmic
Maximum proton injection Lorentz factor - Vp,max 10° 10t Logarithmic
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Parameter Units Symbol Minimum Maximum Type of distribution
Doppler boost - ) 3.5 100 Linear

Blob radius cm R 10145 10'® Logarithmic
Minimum electron injection Lorentz factor — Ye,min 101 10° Logarithmic
Maximum electron injection Lorentz factor - Ye,max 102 108 Logarithmic
Maximum proton injection Lorentz factor - Vp,max 10° 10t Logarithmic
Injection index electrons - Pe 1.7 5 Linear
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Proton luminosity erg.s L, 10*2 10°2 Logarithmic
Magnetic field G B 1072 1035 Logarithmic

Gasparyan, Bégué, Sahakyan 2022

input



Parameter Units Symbol Minimum Maximum Type of distribution

Doppler boost - ) 3.5 100 Linear

Blob radius cm R 10145 108 Logarithmic ) ) ) ) ) ) ) ) )
Minimum electron injection Lorentz factor — Ye,min 101 10° Logarithmic

Maximum electron injection Lorentz factor - Ye,max 102 108 Logarithmic

Maximum proton injection Lorentz factor - Vp,max 10° 10t Logarithmic
Injection index electrons - Pe 1.7 5 Linear |
Injection index protons - Pp 1.6 3.5 Linear

Electron luminosity erg.s ! L. 10*2 10%° Logarithmic
Proton luminosity erg.s” ! L, 10*2 1052 Logarithmic Gasparyan, Bégué, Sahakyan 2022 ‘
Magnetic field G B 1072 1035 Logarithmic
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Convolutional Neural Network

Why CNN? , ,
Architecture Overview
O Structured Data Handling: Ideal for 1D structured inputs like spectra and
[ Input: 10 physical parameters
time-series.
MDense — 5%XConvlD — MaxPool — Flatten — Dense
O Pattern Recognition: Detects local emission features

[ Output: 150 independent observables

O Parameter Scalability: Scales well with complex, high-dimensional inputs.
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What 1s CNN doing ?

Training of the SSC model on 1% of the database: Epoch 0

Spectrum examples

—e— CNN
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https://www.youtube.com/watch?v=L3KxgWYghHE

What is CNN doing ?

Training of the SSC model on 1% of the database: Epoch 3

Spectrum examples
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What is CNN doing ?

Training of the SSC model on 1% of the database: Epoch 10

Spectrum examples

—.—
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What is CNN doing ?

Training of the SSC model on 1% of the database: Epoch 15

Spectrum examples
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What is CNN doing ?

Training of the SSC model on 1% of the database: Epoch 26

Spectrum examples
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What is CNN doing ?

Training of the SSC model on 1% of the database: Epoch 249

Spectrum examples
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What is CNN doing ?

Training of the SSC model. Full database

Spectrum examples
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https://www.youtube.com/watch?v=L3KxgWYghHE

O CNN trained on 7 million spectra generated using the SOPRANO 241

code.

O Training spans 10-dimensional parameter space with broad, 194

Training CNN Surrogates for Hadronic Blazar Models
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IceCube-170922A— TXS 0506+059
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Parameter Estimation in hadronic Modeling

Modeling the SED of TXS 0506+056 during the IceCube-170922 A neutrino . D .
gt ) S . . Posterior Distributions from CNN-based Fit
event using a convolutional neural network trained on hadronic models.
Gaussian likelihood , ,
10-10. 3@‘: Sahakyan, Begué et al., AplJ, 990, 222 (2025)
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Parameter Estimation in hadronic Modeling

Modeling the SED of TXS 0506+056 during the IceCube-170922A neutrino
event using a convolutional neural network trained on hadronic models.
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Neutrinos from PKS 0735+178
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Neutrinos from PKS 0735+178
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Neutrinos from PKS 0735+178
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Sahakyan, Giommi, et al., MNRAS, 2023



MW lightcurve ot PKS 0735+178
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MW lightcurve ot PKS 0735+178 and origin of the emission
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Parameter Estimation in hadronic Modeling

Modeling the SED of PKS 0735+178 during the IceCube-211208A neutrino . C L .
. . . . Posterior Distributions from CNN-based Fit
event using a convolutional neural network trained on hadronic models.
Poisson likelihood 3] Sahakyan, Bégu¢ et al., ApJ, 990, 222 (2025)
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Mar-kariah Multiwavelength Data Center (MMDC): a platform
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Conclusions

Traditional models of blazar emission—SSC, EIC, and hadronic—have significantly advanced.

#

® |
However, full parameter space exploration @mined computationally expensive, especially when
accounting for particle injection andOCQ()hng ;D

We developed machine learmng surrogates for eacl@nodel class usmgvolutlonal neural networks.

These accurately reproduce the spectra across Qlde parameter ranges. The hadronic model—previously

| P = =
requiring extensive computational resm&es f0£ fuII rameter inference—can now be explored within
. / R ")
minutes. e & K ®
PN S 4
This enables fast, scalable, and statlstlcally/”.ust modelglg of blazar emission, including during
® - \ @

multimessenger events.
The growing volume and quality of multiwavelength and multimessenger data from modern
observatories, when combined with machine learning, are poised to significantly enhance our

understanding of blazar physics.



