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Cosmological neutrinos, Neff and CMB

▶ CMB is among the most precise probes of
cosmology and new physics

▶ Strongly depends on Neff
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▶ At 68% CL

Neff = 2.99± 0.17− Planck

Neff = 2.89± 0.11− ACT

▶ Simons Observatory aim to improve the
precision to σ(Neff) < 0.07

▶ SM value Neff = 3.043



New physics in the BBN Era

Addition of hypothetical particles can affect Neff and the CMB:

▶ Contributing to the expansion rate

▶ Entropy injection (EM sector) at decays

▶ Injection of high-energy neutrinos ⇒ spectral distortions

▶ Mesons or unstable leptons decays ⇒ entropy release + secondary
non-thermal neutrinos

▶ Additional lepton asymmetry



Boltzmann Equation

▶ At T ∼ MeV, EM sector - equilibrium. Dynamics of neutrios - Boltzmann
equation:
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Solution

▶ Integrated approach — assume neutrino distributions
fν ≡ fFD(T ), which reduces the problem to a system of ODEs for
Tγ and Tνi .

▶ Discretized approach — directly solve the Boltzmann equation
numerically on a fixed energy grid for each fνi .



Integrated Approach

Pros

▶ Computation speed.

▶ Convenient for low-energy neutrino
or EM injections.

Cons

▶ Breaks down if neutrinos are highly
non-thermal (Eν ≫ T ).

▶ May yield qualitatively incorrect
results in such regimes.

Figure: Left: Integrated vs. unintegrated approach for a toy FIP decaying into the EM sector.
Right: Impact on Neff of a decaying HNL: unintegrated (analytic) vs. discretized (pyBBN)
treatment.



Discretized Approach

▶ Define a momentum grid with fixed step size in comoving momentum
space: p̃ = pphys · a(T )/a0.

▶ Analytically reduce the collision integral.

▶ Solve the Boltzmann integro-differential equation on this grid.

Pros

▶ Captures the full evolution of the
neutrino plasma.

▶ Accuracy controlled by grid
resolution.

Cons

▶ Requires strong dimensional
reduction of Icoll,α.

▶ Computational time scales as

tcomp ∝ E k+2
ν,max,

where k is the reduced
dimensionality.



Direct Simulation Monte Carlo (DSMC)

▶ Original DSMC was used for the
simulation of rarefied gas flows

▶ States of individual particles {ri , vi , t}
▶ Volume divided into cells - Ncell

particles, interaction within cell

▶ At each iterative timestep ∆t

Nsampled =
Ncell(Ncell − 1)

2

(σv)max∆t

Vcell

pairs are sampled for interaction.

▶ Each interaction is accepted with
probability Pacc =

(σv)
(σv)max

and the
outgoing kinematics is generated



DSMC for Early Universe

DSMC can be adapted for the Early Universe dynamics:

General idea:

▶ System is presented as a set of individual particles (νi/ν̄i and
γ, e±, potentially X ,Y ... representing BSM species, mesons etc.).

▶ Isotropy and homogeneity - only momenta degrees of freedom
{�Ari , vi , t}.

▶ System is split into subsets (cells) at each timestep, and only
interactions within a cell are considered

▶ EM particles are in thermal equilibrium represented by
TEM/TEM,cell ⇒
No tracking, we sample them at every step.

▶ Additional Fermi/Bose factors

▶ Expansion of the Universe is included at each step
Vsystem → Vsystem(1 + 3H∆t), Ei → Ei

1+H∆t



Interaction step

▶ Initialize the cell with TEM,cell = TEM

and NEM

▶ Sample the interaction between
Nsampled (∆t passed)

▶ In case of presence of extra species -
determine their dynamics over ∆t +
inject neutrinos from decays

▶ Update the volume of the system and
particles’ energies due to expansion

▶ Repeat

Randomly select pair to interact
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What it gives?

▶ Weaker dependence of the complexity on the maximum neutrino energy in
the system ⇒ significant speed-up compared to the traditional Boltzmann
discretization approach.

▶ Possibility to study very high-energetic injections ≫ GeV,

▶ Cross-checks for Boltzmann solver implementations.

▶ Easy tracking of the system at each step and more control over
microscopics.



Cross-checks and tests

DSMC
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Figure: Energy density evolution if all species are assumed with equilibrium distribution
(integrated approach) with (left) and without ( right) expansion.
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Figure: Approaching the thermal equilibrium in case of high-energy neutrino injection



Cross-checks and tests

▶ Simulation with N = 3 · 107 has fluctuations at level O(0.1%)

▶ few ×100 is a sufficient number of neutrinos per cell

Nparticles = 60000
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Figure: The temporal evolution of the quantity δρν when varying numbers of neutrinos
per cell Ncell,ν and particles in the system N with equilibrium starting conditions



▶ Comparison of the DSMC approach
with the discretization code for the
setup of injection of 70 MeV neutrinos
into νe .

▶ presented value δρν :

δρν =

(
ρEM
ρν

)
SM

ρν
ρEM

− 1

▶ Injection of neutrinos with Eν ≫ T
eventually leads to decrease of Neff

DSMC
2005.07047

2.5 2.6 2.7 2.8 2.9 3.0

-1

0

1

2

3

4

5

TEM [MeV]

δ
ρ
ν
,%

Injection of 70 MeV neutrinos into νe only, ρν,inj/ρν = 5%

DSMC

E2fFD[E,TEM]
2005.07047

10 20 30 40 50
1×10-4

5×10-4
0.001

0.005
0.010

0.050
0.100

Eνe [MeV]

dn
ν
e
/d
E
ν
e
[M
eV

2
]

The moment δρν = 0

▶ In recent update of the DSMC [2508.08379], complete SM setup including
QED corrections were tested and result Neff = 3.0439 was obtained. It is
in perfect agreement with previous calculations

https://arxiv.org/abs/2508.08379


Conclusion

▶ DSMC presents a new approach of studying the dynamics of neutrinos
during their decoupling

▶ Their non-trivial evolution can lead to unexpected outcomes in terms of
Neff

▶ DSMC proposes a cross-check alternative for SM BBN/CMB scenario,
significantly more efficient option for heavy (mFIP ≲ GeV)
FIPs+BBN/CMB and the only option to study ultra-high energy neutrino
injections Eν ≫ GeV

Thank you for your attention



Metastable Particles



Metastable particles

▶ EM and neutrino injections can
appear through metastable
particles produced in FIPs’ decays

▶ It was common to treat them as
instantly decaying

▶ They can participate in (i)
annihilations, (ii) interactions with
nuclei, (iii) EM scatterings (iv)
decays

▶ Except for EM scatterings
ΓEM ≫ Γann, nucl, dec no clear
hierarchy

We focus on the dynamics of
µ±, π±,K±,K 0

L
Figure: BR of different FIPs



Evolution of metastable particles

▶ We solve a system of coupled equations for each Y = µ±, π±,K±,KL .
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Figure: The yields of muons and pions that would decay, annihilate, or interact with
the nucleons if injected by decaying toy-model FIP with BR solely into a π+π−/µ+µ−.



Neff change for toy models and scalar

Allowed by Planck

mX = 0.282 GeV
mX = 0.55 GeV
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Figure: Left: toy model decaying only into pions, Right: Higgs-like scalar effect on Neff

▶ Accurate account of Y’s evolution change the outcome of Neff value.

▶ Especially important near the decay mass threshold.
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