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Cosmological neutrinos, Nef and CMB
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New physics in the BBN Era

Addition of hypothetical particles can affect Nes and the CMB:

» Contributing to the expansion rate
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Entropy injection (EM sector) at decays
Injection of high-energy neutrinos = spectral distortions

Mesons or unstable leptons decays = entropy release + secondary
non-thermal neutrinos

Additional lepton asymmetry



Boltzmann Equation

> At T ~ MeV, EM sector - equilibrium. Dynamics of neutrios - Boltzmann

equation:
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» Integrated approach — assume neutrino distributions
f, = fro(T), which reduces the problem to a system of ODEs for
T, and T,,.

» Discretized approach — directly solve the Boltzmann equation
numerically on a fixed energy grid for each f,,.




Integrated Approach

Pros Cons

» Computation speed. » Breaks down if neutrinos are highly
non-thermal (E, > T).

» May yield qualitatively incorrect
results in such regimes.

» Convenient for low-energy neutrino
or EM injections.
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Figure: Left: Integrated vs. unintegrated approach for a toy FIP decaying into the EM sector.
Right: Impact on N of a decaying HNL: unintegrated (analytic) vs. discretized (pyBBN)

treatment.



Discretized Approach

» Define a momentum grid with fixed step size in comoving momentum
space: B = pohys - a(T)/ao.
» Analytically reduce the collision integral.

» Solve the Boltzmann integro-differential equation on this grid.

Pros Cons
» Captures the full evolution of the » Requires strong dimensional
neutrino plasma. reduction of Iegii,q -
» Accuracy controlled by grid » Computational time scales as
resolution.
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where k is the reduced
dimensionality.



Direct Simulation Monte Carlo (DSMC)

Original DSMC was used for the
simulation of rarefied gas flows

States of individual particles {ri,v;, t}

Volume divided into cells - Neeii
particles, interaction within cell

At each iterative timestep At

NceII(NceII - 1) (UV)maxAt
2 Vcell

Nsampled -

pairs are sampled for interaction.

Each interaction is accepted with
probability Pacc = (("‘r’:ax and the
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outgoing kinematics is generated
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DSMC for Early Universe

DSMC can be adapted for the Early Universe dynamics:

General idea:

> System is presented as a set of individual particles (v;/7; and
7, eT, potentially X, Y... representing BSM species, mesons etc.).
» Isotropy and homogeneity - only momenta degrees of freedom
{K, vi, t}.
> System is split into subsets (cells) at each timestep, and only
interactions within a cell are considered
» EM particles are in thermal equilibrium represented by
Tem/ Tem cen =
No tracking, we sample them at every step.
» Additional Fermi/Bose factors

» Expansion of the Universe is included at each step

\/system — Vsystem(l T 3HAt)7 Ei - 1+E;At




Interaction step

Cell with Tz, ceir, Nem,cerr» and neutrinos

> Initialize the cell with Tew.car = Tem S — '
and NEM No Intermidia;eintera/ction acceptance

» Sample the interaction between J,Ves
Neampiea (At passed) e e

extract neutrino's kinematics from particles' data

» In case of presence of extra species -

i 1 H Simulate pair's collisi
determine their dynamics over At + seect st ctterng channel,
.. . generate final state kinematics Eynar
inject neutrinos from decays T
Final interaction acceptance
» Update the volume of the system and T2 basedon uantum satstie weign e

Recalculate gy, coi and neutrino particle data

particles’ energies due to expansion

& Yes

| 4 Repeat Update local properties of the plasma
Update Ty eu and Neys o Vi v cen
perform oscillations of final neutrinos

Repeat Nyampiea times




What it gives?

v

Weaker dependence of the complexity on the maximum neutrino energy in
the system = significant speed-up compared to the traditional Boltzmann
discretization approach.

Possibility to study very high-energetic injections > GeV,
Cross-checks for Boltzmann solver implementations.

Easy tracking of the system at each step and more control over
microscopics.



Cross-checks and tests
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Figure: Energy density evolution if all species are assumed with equilibrium distribution
(integrated approach) with (left) and without ( right) expansion.

Distribution of neutrinos
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Figure: Approaching the thermal equilibrium in case of high-energy neutrino injection



Cross-checks and tests

» Simulation with N = 3- 10 has fluctuations at level ©(0.1%)

» few x100 is a sufficient number of neutrinos per cell
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Figure: The temporal evolution of the quantity §p, when varying numbers of neutrinos
per cell N, and particles in the system N with equilibrium starting conditions



Injection of 70 MeV neutrinos into v, only, p,./p, = 5%
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» In recent update of the DSMC [2508.08379], complete SM setup including
QED corrections were tested and result Ne = 3.0439 was obtained. It is
in perfect agreement with previous calculations


https://arxiv.org/abs/2508.08379

Conclusion

» DSMC presents a new approach of studying the dynamics of neutrinos
during their decoupling

» Their non-trivial evolution can lead to unexpected outcomes in terms of
NefF

» DSMC proposes a cross-check alternative for SM BBN/CMB scenario,
significantly more efficient option for heavy (mgp < GeV)
FIPs+-BBN/CMB and the only option to study ultra-high energy neutrino
injections E, > GeV

Thank you for your attention



Metastable Particles



Metastable particles

» EM and neutrino injections can
appear through metastable
particles produced in FIPs' decays

» |t was common to treat them as
instantly decaying

» They can participate in (i)
annihilations, (ii) interactions with
nuclei, (i) EM scatterings (iv)
decays

» Except for EM scatterings
Cem > rann, nucl, dec NO clear
hierarchy

We focus on the dynamics of
p, T KE KL
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Figure: BR of different FIPs



Evolution of metastable particles

> We solve a system of coupled equations for each Y = p*, n% K+ K .
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Figure: The yields of muons and pions that would decay, annihilate, or interact with
the nucleons if injected by decaying toy-model FIP with BR solely into a 7= /u™p™



Nefr change for toy models and scalar

Higgs-like scalar
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Figure: Left: toy model decaying only into pions, Right: Higgs-like scalar effect on Neg

» Accurate account of Y's evolution change the outcome of New value.

» Especially important near the decay mass threshold.
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