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Brief summary of jets

An outflow starts its propagation from a

SMBH (Blandford&Zjanek 1977)

(Fanaroff&Riley 1974) classification:

FRI: brighter

close to the AGN,

cooling down

through the

propagation

FRII: More powerful and show bright hot spot

at the end of the lobes.
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From jet deceleration to particle acceleration

Nearby galaxy Centaurus A in X-ray (Kraft et
al 2001, Goodger et al 2010)

Entrainment in FRIs
Protons or heavier elements (stellar winds,
clouds, SN, ambient medium)
→ inexorable mass-loading and deceleration
of the jet (De Young 1986, Bowman et al.
1996)

Shocks
• Balance between 2 supersonic

matching flows (Komissarov 1994,
Hubbard & Blackman 2006)

• Conversion of Ek into U
→ expansion of the shock surface

• Acceleration of e−, p or heavier ions
→ possible emissions up to γ-rays and
acceleration of UHECR?
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Jet/star interaction time scale with the distance from the jet base

Close to the AGN | z < 10pc
• Presence of large amounts of gas

→ typically ≈ 103 −104 stars
(RG, MS, AGB..)

• Interaction with the outflow short
(tint = 2Rj/vorb, typ. ≈ kyr) but frequent
(short orbital period) (Kurfürst et al.
2024)
→ small mass loss per interaction

Far from the AGN | z > kpc
• The jet has expanded

→ Jet/star interaction time scale
increases (typ. ≈ Myr)

• Stellar population typ. ≈ 1star/pc3

⇒ If RSG, eventual explosion
• few SN/century/galaxy and 0.01% of

them inside the jet (Vieyro et al. 2019)

A RSG can explode within the jet flow
(Bosch-Ramon 2023)

If the jet ram pressure becomes dominant
over the SN ejecta

⇒ eventual disruption
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3D RHD simulations (Longo et al. 2025)

• We start ≈ 103 yr post explosion,
located far from the jet walls

• Rj >> RSN ⇒ RSN ≈ 10−2Rj

• Uniform ejecta ρSN, pSN >> ρj, pj

• Jet and ejecta: ionized gas of
protons and electrons

Jet properties
• Rj = 100pc

• Lj = 1044 ergs−1

• Γj = 2

• hj = 1.1c2

• ρj = 6 ·10−30 g/cm3

• Tj = 2×1011K

SN properties
• MSN = 2 M⊙
• ESN = 1051 erg

• RSN = 1.1pc

• ρSN = 2.4 ·10−23 g/cm3

• TSN = 109 K

• vorb = 200kms−1

Code: Ratpenat (Perucho et al. 2010)
OpenMPI+OpenMP HRSC 3D RHD code, Marquina 1998
fluxes, PPM recon, Synge EoS, TVD-preserving RK

Conservative form equations ∂U
∂t + F i

∂xi = 0

Where U = (D,S j ,τ)T and F = (Dv i ,S j v i +pδi j ,Si −Dv i )

7 / 20



Within the path of an AGN jet Supernova explosion Non-thermal emissions To take away

2D cuts through the 3D physical domain
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Dynamical evolution
• Free expansion phase

• Shock wave and disruption

• Important mixing

• Ejecta swept away
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Non-thermal emission:
Simplified approach to compute the radiative output

Power emitted
• Non-thermal energy ENT = ηUcell

where η< 1

• Broken power-law for the e−
distribution with a break energy given
by the adiabatic time

• Inverse Compton scattering +
Synchrotron

Inverse Compton scattering
• Target photons:

→ Anisotropic CMB + IR galactic
background

• Approximate formula for the
Thompson+Klein-Nishina regime
(Khangulyan 2014,
Bosch-Ramon&Khangulyan 2018)
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Emitted luminosity with η= 0.1
• With the given e− distribution, we

reach the PeV in IC
• The Synchrotron emission reaches

1041 ergs−1 and the IC reaches
1039 ergs−1
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Flux on the line of sight for a source at z = 0.007 and φ= 20°
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Flux on the line of sight for a source at z = 0.007 and φ= 60°
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SEDs with φ= 20,60◦
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• η= 0.1 ηB = pB/pg = 10−2

• Source at z = 0.003 (13Mpc)
(type CenA)

• Fluxes for synchrotron and IC
emission

• Possible detection of
synchrotron by Chandra and
IC by CTAO
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Light curve with φ= 20,60◦ and z = 0.007 (31Mpc)

X-rays (1018 GHz) γ-rays (1027 GHz)

• Internal to non-thermal energy ratio η= 0.1,0.01

• IC close to be detectable in γ-rays
• Chandra is sensitive enough to detect the synchrotron emission for the whole

duration of the interaction
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Jet/SN interaction
• A post-disruption expansion of the bow-shock,

which covers the whole jet
• Causes a local jet drop in velocity of 40%

• Results in a mass-load of 10−4 M⊙ yr−1 over the
interaction time scale (≈ 104 yr)

NT radiation
• For sources closer than or at 30Mpc,

CTA may be able to detect the γs
• Chandra should easily detect the X-ray

synchrotron
• In radio (43Ghz) peak of 0.1mJy at 30 Mpc in

synchrotron

Longo et al. In prep
• FRIs deceleration model (Perucho

2020)
• Stars entering the jet through the

jet/ISM shear layer
• Trigger mixing between the ISM and

the jet
• Possible to apply the non thermal

calculations to the shocked jet material
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Thank you
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Following the time evolution of the interaction

Normalized quantities: summing across the outflow boundary and divided by the jet values
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• Global drop for both energy
densities

• u ↗ whith the swept heated ejecta

• ek ↗ with the loaded heavy matter
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• D ↗ with the entrainment of the
ejecta

• vy ↘ with the disruption then ↗
with the reacceleration
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RHD equations

Stress-energy tensor :
T µν = ρhuµuν+pgµν

We use the Ratpenat code,
which solves the conservation
equations with high-resolution
shock-capturing methods

∂U

∂t
+ Fi

∂xi
= 0

Where U = (D,Sj,τ)T and

F =
 Dv i

S j v i +pδi j

Si −Dv i



The conservative variables are
related to the primitive ones

The rest mass density D = ρΓ
The density momentum
Si = ρhΓ2v i

The energy density
τ= ρhΓ2 −p −D

Where we can define the
4-vector velocity uα = Γ(1, v i )
The specific enthalpy
h = 1+ϵ/c2 +p/(ρc2)
And the Lorentz factor
Γ= 1p

1−v i vi /c2
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RMHD equations

∂U

∂t
+ Fi

∂xi
= 0

Where U = (D,Sj,τ,Bj)T and

F =


Dv i

ρh∗W 2 ∗ v j v i +p∗δi j −bi b j

ρh∗W 2v i −b0bi −ρW v i

v i B j −B i v j



And we can define the other
variables:
4-vector velocity uα = Γ(1, v i )
4-vector magnetic field where
b0 =W (v ·B)
bi = B i

W + v i b0

And the magnetic pressure
would be |b|2 = B 2

W 2 + (v ·B)2

The specific enthalpy
h∗ = 1+ϵ+p/(ρ)+|b|2/ρ
The total pressure
p∗ = pg +pmag = p +|b|2/2
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