

Supernova explosion within an extragalactic jet

Dynamics and radiative output

Bruno Longo

M. Perucho, V. Bosch-Ramon, J.M. Martí, G. Fichet de Clairfontaine

Departament d'Astronomia i Astrofísica, Universitat de València

November 2, 2025

Within the path of an AGN jet

●○○○

Supernova explosion

○○○

Non-thermal emissions

○○○○○

To take away

○○○○○○

Table of contents

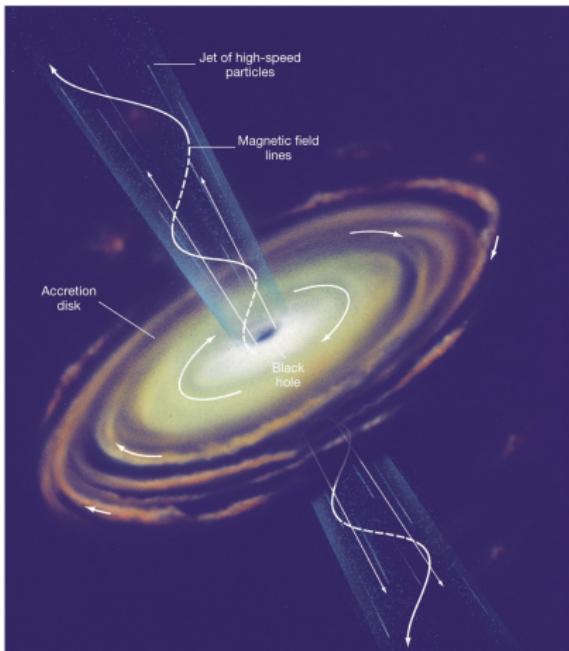
Within the path of an AGN jet

Supernova explosion

Non-thermal emissions

To take away

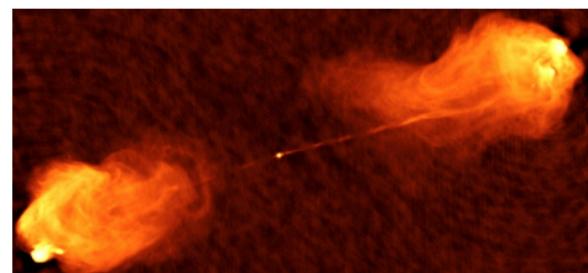
Within the path of an AGN jet
○●○○


Supernova explosion
○○○

Non-thermal emissions
○○○○○

To take away
○○○○○○

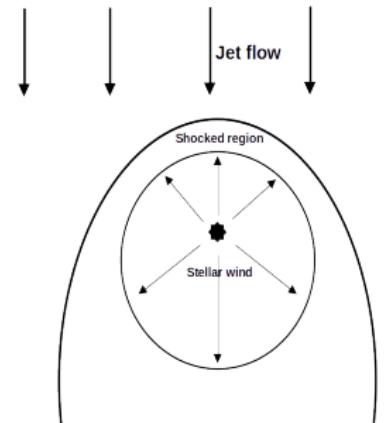
Brief summary of jets


An outflow starts its propagation from a SMBH (Blandford&Zjanek 1977)

(Fanaroff&Riley 1974) classification:

FRI: brighter
close to the AGN,
cooling down
through the
propagation

FRII: More powerful and show bright hot spot
at the end of the lobes.


Within the path of an AGN jet
○○●○

Supernova explosion
○○○

Non-thermal emissions
○○○○○

To take away
○○○○○○

From jet deceleration to particle acceleration

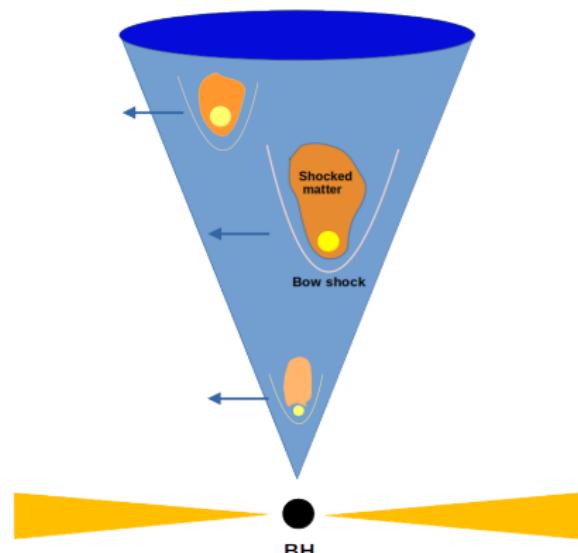
Shocks

- Balance between 2 supersonic matching flows (Komissarov 1994, Hubbard & Blackman 2006)
- Conversion of E_k into U
→ expansion of the shock surface
- Acceleration of e^- , p or heavier ions
→ possible emissions up to γ -rays and acceleration of UHECR?

Nearby galaxy Centaurus A in X-ray (Kraft et al 2001, Goodger et al 2010)

Entrainment in FRIs

Protons or heavier elements (stellar winds, clouds, SN, ambient medium)
→ inexorable mass-loading and deceleration of the jet (De Young 1986, Bowman et al. 1996)


Jet/star interaction time scale with the distance from the jet base

Close to the AGN | $z < 10\text{ pc}$

- Presence of large amounts of gas
→ typically $\approx 10^3 - 10^4$ stars
(RG, MS, AGB..)
- Interaction with the outflow short
($t_{\text{int}} = 2R_j / v_{\text{orb}}$, typ. $\approx \text{kyr}$) but frequent
(short orbital period) (Kurfürst et al.
2024)
→ small mass loss per interaction

Far from the AGN | $z > \text{kpc}$

- The jet has expanded
→ Jet/star interaction time scale
increases (typ. $\approx \text{Myr}$)
- Stellar population typ. $\approx 1\text{ star}/\text{pc}^3$
⇒ If RSG, eventual explosion
- few SN/century/galaxy and 0.01% of
them inside the jet (Vieyro et al. 2019)

A RSG can explode within the jet flow
(Bosch-Ramon 2023)

If the jet ram pressure becomes dominant
over the SN ejecta
⇒ eventual disruption

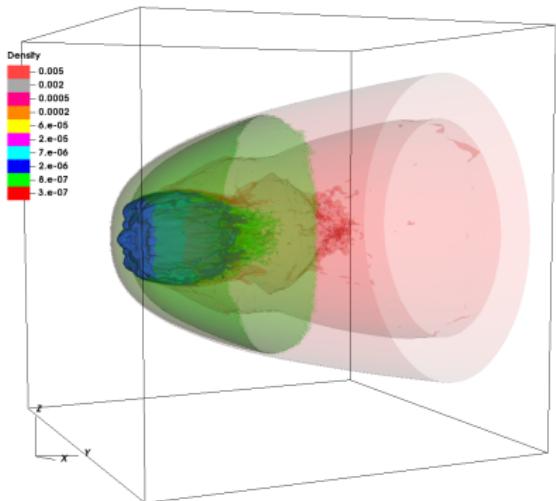
Within the path of an AGN jet
oooo

Supernova explosion
●○○

Non-thermal emissions
○○○○○

To take away
○○○○○○

Table of contents


Within the path of an AGN jet

Supernova explosion

Non-thermal emissions

To take away

3D RHD simulations (Longo et al. 2025)

Jet properties

- $R_j = 100 \text{ pc}$
- $L_j = 10^{44} \text{ ergs}^{-1}$
- $\Gamma_j = 2$
- $h_j = 1.1 c^2$
- $\rho_j = 6 \cdot 10^{-30} \text{ g/cm}^3$
- $T_j = 2 \times 10^{11} K$

SN properties

- $M_{\text{SN}} = 2 M_{\odot}$
- $E_{\text{SN}} = 10^{51} \text{ erg}$
- $R_{\text{SN}} = 1.1 \text{ pc}$
- $\rho_{\text{SN}} = 2.4 \cdot 10^{-23} \text{ g/cm}^3$
- $T_{\text{SN}} = 10^9 K$
- $v_{\text{orb}} = 200 \text{ km s}^{-1}$

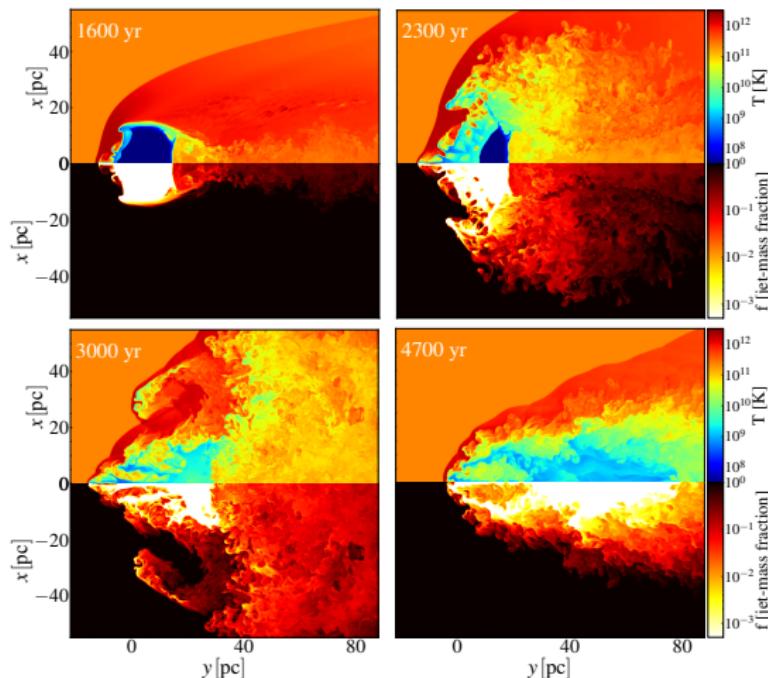
- We start $\approx 10^3$ yr post explosion, located far from the jet walls
- $R_j \gg R_{\text{SN}} \Rightarrow R_{\text{SN}} \approx 10^{-2} R_j$
- Uniform ejecta $\rho_{\text{SN}}, p_{\text{SN}} \gg \rho_j, p_j$
- Jet and ejecta: ionized gas of protons and electrons

Code: Ratpenat (Perucho et al. 2010)

OpenMPI+OpenMP HRSC 3D RHD code, Marquina 1998 fluxes, PPM recon, Syng EoS, TVD-preserving RK

Conservative form equations $\frac{\partial U}{\partial t} + \frac{\partial F^i}{\partial x^i} = 0$

Where $U = (D, S^j, \tau)^T$ and $F = (Dv^i, S^j v^i + p\delta^{ij}, S^i - Dv^i)$


Within the path of an AGN jet
○○○○

Supernova explosion
○○●

Non-thermal emissions
○○○○○

To take away
○○○○○○

2D cuts through the 3D physical domain

Dynamical evolution

- Free expansion phase
- Shock wave and disruption
- Important mixing
- Ejecta swept away

Within the path of an AGN jet
oooo

Supernova explosion
ooo

Non-thermal emissions
●ooooo

To take away
oooooo

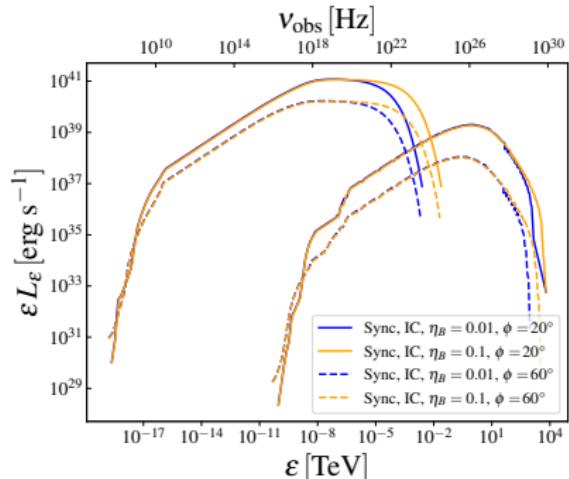
Table of contents

Within the path of an AGN jet

Supernova explosion

Non-thermal emissions

To take away


Non-thermal emission: Simplified approach to compute the radiative output

Power emitted

- Non-thermal energy $E_{\text{NT}} = \eta U_{\text{cell}}$ where $\eta < 1$
- Broken power-law for the e^- distribution with a break energy given by the adiabatic time
- Inverse Compton scattering + Synchrotron

Inverse Compton scattering

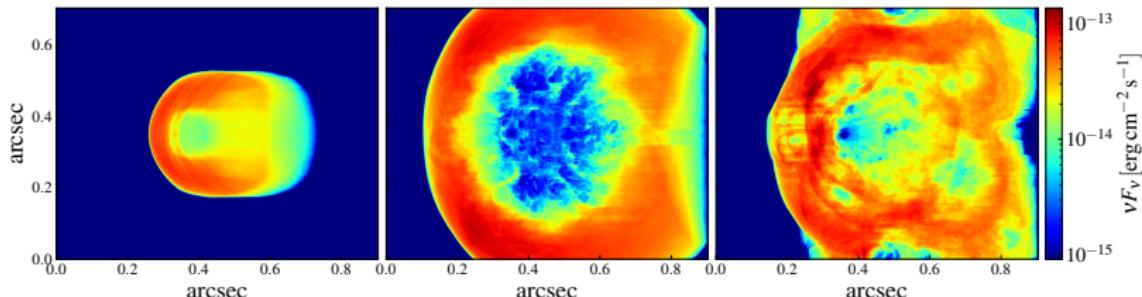
- Target photons:
→ Anisotropic CMB + IR galactic background
- Approximate formula for the Thompson+Klein-Nishina regime (Khangulyan 2014, Bosch-Ramon&Khangulyan 2018)

Emitted luminosity with $\eta = 0.1$

- With the given e^- distribution, we reach the PeV in IC
- The Synchrotron emission reaches $10^{41} \text{ ergs}^{-1}$ and the IC reaches $10^{39} \text{ ergs}^{-1}$

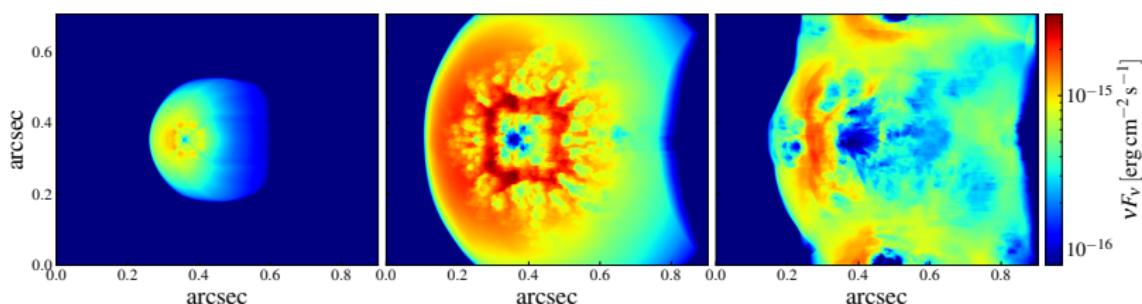
Within the path of an AGN jet
oooo

Supernova explosion
ooo


Non-thermal emissions
oo●ooo

To take away
oooooo

Flux on the line of sight for a source at $z = 0.007$ and $\phi = 20^\circ$


IC

10^{27} Hz

Sync

10^{10} Hz

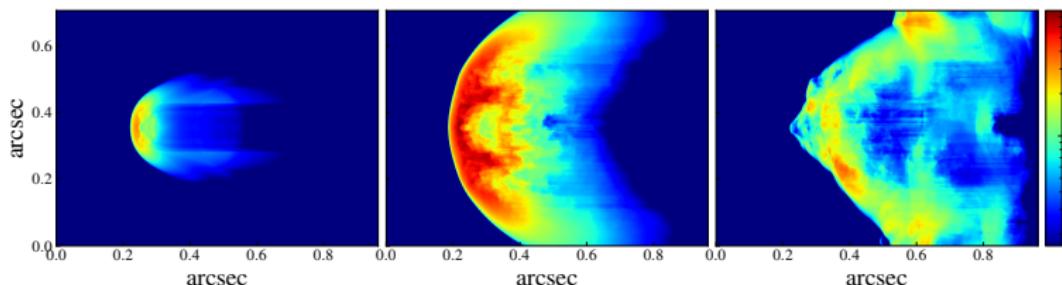
1 kyr

2.3 kyr

3.8 kyr

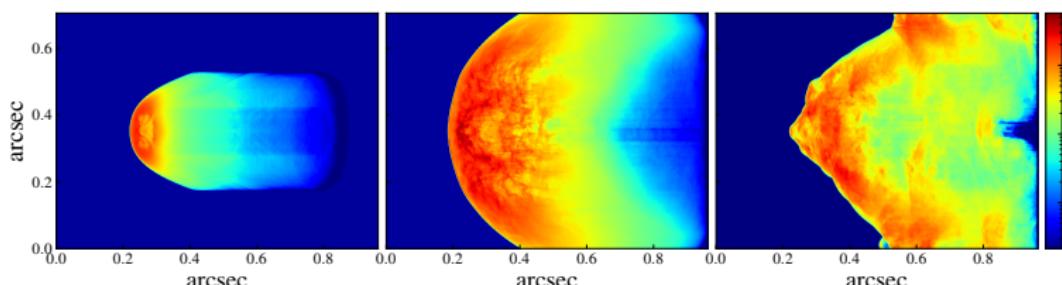
Within the path of an AGN jet
○○○○

Supernova explosion
○○○


Non-thermal emissions
○○○●○○

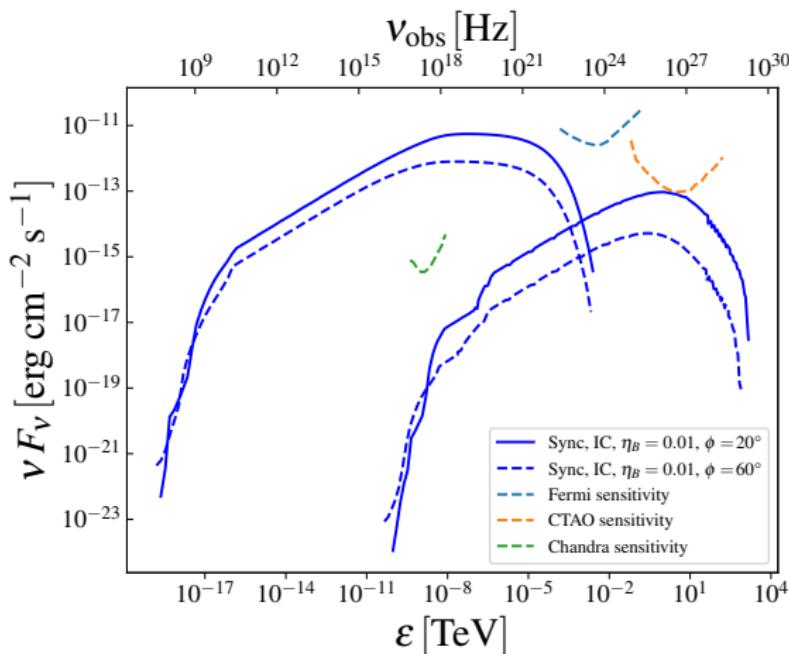
To take away
○○○○○○

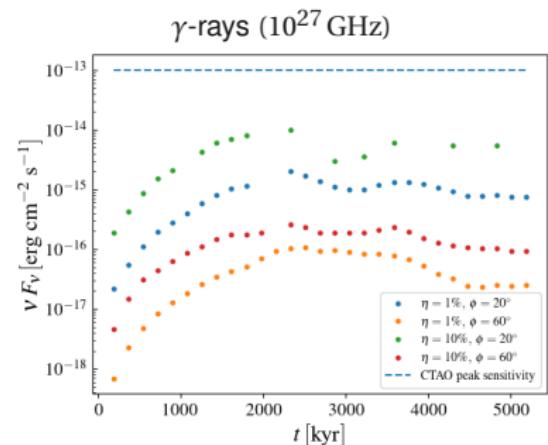
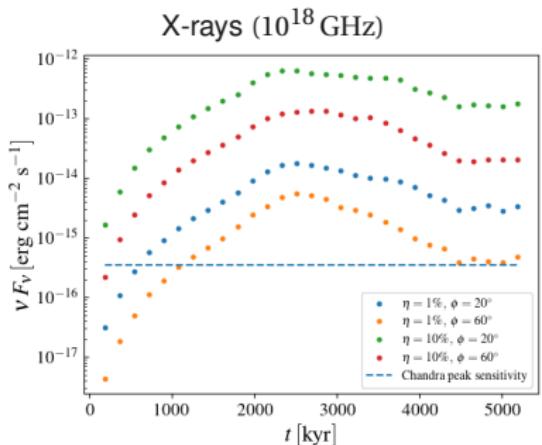
Flux on the line of sight for a source at $z = 0.007$ and $\phi = 60^\circ$


IC

10^{24} Hz

Sync


10^{18} Hz



1 kyr

2.3 kyr

3.8 kyr

SEDs with $\phi = 20, 60^\circ$

- $\eta = 0.1 \quad \eta_B = p_B / p_g = 10^{-2}$
- Source at $z = 0.003$ (13Mpc) (type CenA)
- Fluxes for synchrotron and IC emission
- Possible detection of synchrotron by Chandra and IC by CTAO

Light curve with $\phi = 20, 60^\circ$ and $z = 0.007$ (31Mpc)

- Internal to non-thermal energy ratio $\eta = 0.1, 0.01$
- IC close to be detectable in γ -rays
- Chandra is sensitive enough to detect the synchrotron emission for the whole duration of the interaction

Within the path of an AGN jet
oooo

Supernova explosion
ooo

Non-thermal emissions
oooooo

To take away
●ooooo

Table of contents

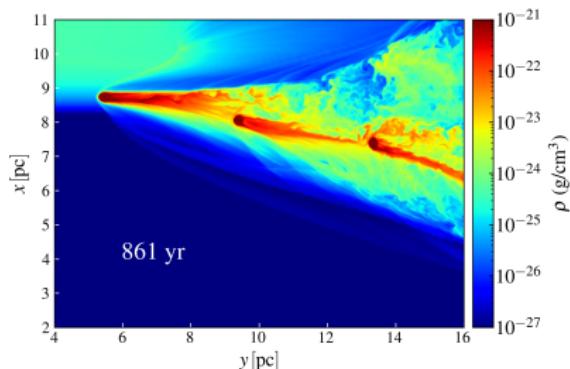
Within the path of an AGN jet

Supernova explosion

Non-thermal emissions

To take away

Jet/SN interaction


- A post-disruption expansion of the bow-shock, which covers the whole jet
- Causes a local jet drop in velocity of 40%
- Results in a mass-load of $10^{-4} M_{\odot} \text{ yr}^{-1}$ over the interaction time scale ($\approx 10^4 \text{ yr}$)

NT radiation

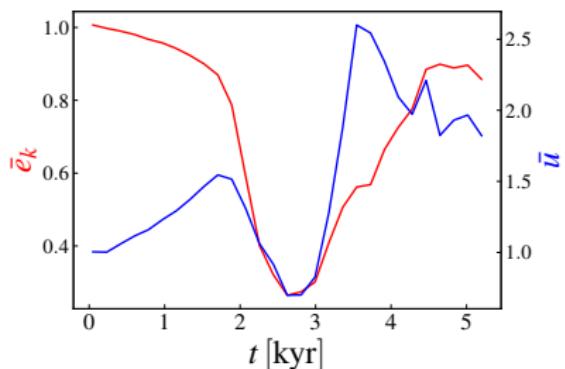
- For sources closer than or at 30Mpc, CTA may be able to detect the γ s
- Chandra should easily detect the X-ray synchrotron
- In radio (43Ghz) peak of 0.1 mJy at 30 Mpc in synchrotron

Longo et al. In prep

- FRIs deceleration model (Perucho 2020)
- Stars entering the jet through the jet/ISM shear layer
- Trigger mixing between the ISM and the jet
- Possible to apply the non thermal calculations to the shocked jet material

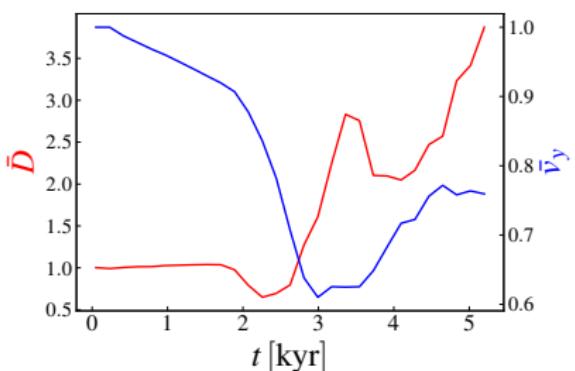
Within the path of an AGN jet
○○○○

Supernova explosion
○○○


Non-thermal emissions
○○○○○

To take away
○○●○○

Thank you


Following the time evolution of the interaction

Normalized quantities: summing across the outflow boundary and divided by the jet values

Kinetic and internal energy densities

- Global drop for both energy densities
- $u \nearrow$ with the swept heated ejecta
- $e_k \nearrow$ with the loaded heavy matter

Lab frame density and axial velocity

- $D \nearrow$ with the entrainment of the ejecta
- $v_y \searrow$ with the disruption then \nearrow with the reacceleration

RHD equations

Stress-energy tensor :

$$T^{\mu\nu} = \rho h u^\mu u^\nu + p g^{\mu\nu}$$

We use the Ratpenat code, which solves the conservation equations with high-resolution shock-capturing methods

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\mathbf{F}^i}{\partial x^i} = 0$$

Where $\mathbf{U} = (\mathbf{D}, \mathbf{S}^j, \tau)^T$ and

$$\mathbf{F} = \begin{pmatrix} Dv^i \\ S^j v^i + p\delta^{ij} \\ S^i - Dv^i \end{pmatrix}$$

The conservative variables are related to the primitive ones

The rest mass density $D = \rho\Gamma$

The density momentum

$$S^i = \rho h \Gamma^2 v^i$$

The energy density

$$\tau = \rho h \Gamma^2 - p - D$$

Where we can define the 4-vector velocity $u^\alpha = \Gamma(1, v^i)$

The specific enthalpy

$$h = 1 + \epsilon/c^2 + p/(\rho c^2)$$

And the Lorentz factor

$$\Gamma = \frac{1}{\sqrt{1 - v^i v_i / c^2}}$$

RMHD equations

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\mathbf{F}^i}{\partial x^i} = 0$$

Where $\mathbf{U} = (\mathbf{D}, \mathbf{S}^j, \tau, \mathbf{B}^j)^T$ and

$$\mathbf{F} = \begin{pmatrix} Dv^i \\ \rho h^* W^2 * v^j v^i + p^* \delta^{ij} - b^i b^j \\ \rho h^* W^2 v^i - b^0 b^i - \rho W v^i \\ v^i B^j - B^i v^j \end{pmatrix}$$

And we can define the other variables:

4-vector velocity $u^\alpha = \Gamma(1, v^i)$

4-vector magnetic field where

$$b^0 = W(\mathbf{v} \cdot \mathbf{B})$$

$$b^i = \frac{B^i}{W} + v^i b^0$$

And the magnetic pressure would be $|b|^2 = \frac{B^2}{W^2} + (\mathbf{v} \cdot \mathbf{B})^2$

The specific enthalpy

$$h^* = 1 + \epsilon + p/(\rho) + |b|^2/\rho$$

The total pressure

$$p^* = p_g + p_{mag} = p + |b|^2/2$$