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+ [ntroduction

- Propulsion mechanism based in magneto-centrifugal forces
(Blandford & Payne, 1982; Pudritz & Norman 1983).

- Non-relativistic jets ( ~100-1000 km/s!!!). Ve L A

. Dense environments (2100 cm?-3).

. Bright at sub-mm and IR wavelengths.

. Thermal radiation is the dominant emission mechanism...
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+ [ntroduction

- Propulsion mechanism based in magneto-centrifugal forces
(Blandford & Payne, 1982; Pudritz & Norman 1983).

- Non-relativistic jets ( ~100-1000 km/s!!!). Ve L A

- Dense environments (2100 cm-2).

. Bright at sub-mm and IR wavelengths.
« Thermal radiation is the dominant emission mechanism...

..but 50% of radio jets show partial signatures of non-

thermal emission!!!
(e.g. blind observations carried out by Obonyo et al., 2024)
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l Iﬂ J[-rO dUCthn Serpens tripe radio continuum source

Spectral Index
-0.6 -0.4 -0.2 O 8 R 0.4 0.6
I 0 s

| Serpens

- Negative radio spectral index compatible with synchrotron
| . 10 +L+ ands
emission. (eg. Obonyoetal, 2019) $+C+X Band

n

. Electrons detected reach at least GeV energies.

|
o)

DEC Offset (arcsec)
O

« Gamma rays can observe protons/electrons even at
higher energies. - SooD

0 5 10
RA Offset (arcsec)
(Rodriguez-Kamenetzky et al, 2016)
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Probing the origin of 4FGL J0822.8-4207: cosmic ray illumination from the SNR Puppis
A and the Herbig-Haro object HH219

Araya, M.; Gutiérrez, L.; Kerby, S.

2022RAA....22b5016Y 2022/02 cited: 7 : 10.01 ; T . — 10.01

Detection of Gamma-Rays from the Protostellar Jet in the HH 80-81 System - C ] NwW
Yan, Da-Hai; Zhou, Jia-Neng; Zhang, Peng-Fei I

2023MNRAS.523..105D 2023/07 cited: 5

High-energy gamma-ray emission powered by a young protostar: the case of S255
NIRS 3

de Ona Wilhelmi, Emma; Lopez-Coto, Rubén; Su, Yang

1.0 .
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2024MNRAS.532.44460 2024/08 cited: 4 : i 1 ! 1
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protoplanetary nebula producing y-rays? 0.1 0.1 L
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<Y>

. Driven by IRAS 18162-2048 (~20 Me).

'ne case of HH 80-81

- One of the largest (~b pc) and most collimated jets known so far.

- High speed knots (>1000 km/s) with 1037 erg/s of jet mechanical power.

. Polarized non-thermal synchrotron emission

iNn radio wavelengths.
(Carrasco-Gonzdalez et al., 2010)

. Non-thermal emission form the main knots in
nard X-rays.

Gamma-ray detection by Yan et al. (2022).

Total Intensity [mJy/beam] Polarization Degree [%]

-~ NN
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+ Fermi-LAT

- Gamma-ray spacecraft telescope: from 30 MeV to
300 GeV.

- Launched in 2008 (we used 15 yr of exposure time).

. Limited angular resolution (68% containment angle AFGL DR4 Catalog
of ~4° at 100 MeV).

- High contamination from the Galactic diffuse
emission.

300 MeV of lower limit.
Detection of 5.40!!
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Gamma-ray source characterization

y Above 300 MeV : Above 500 MeV
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+ Gamma-ray source identification

AFGL J1818.5-2036 Two candidates inside the 99% confidence

—20°00/
areq:
= 30/ - J1819: Extragalactic compact source.
= =
& = - Non detected in X-rays and VHE.
N
53 —21°00/ =
- HH 80-81: Identified as the most
orobable gamma-ray emitter.
30/

Best Location

18hgom  9om 18™ 16™
RA (J2000)
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+

- Protons: Pion decay.

s 7
TN

- Electrons: Bremsstrahlung emission.

§ 7
//‘3,\\

Time (yr)

Gamma-ray production
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+ Gamma-ray production 10

- From photo-spectrum to particle spectrum. (NAIMA)

—— DBremsstrahlung emission -

7Y decay emission

K+ LAT data

Particle distribution:

o0 (1ay) (2
PE)=P(TGev ) P Evuror

107*F - Gamma-ray spectrum E
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. . 10° 10! 10
of energy in Cosmic Rays Energy (GeV)
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+ Gamma-ray production “

- From photo-spectrum to particle spectrum. (NAIMA)

LI I | | | | I 1T 11 I | | | | | L I
— Bremsstrahlung emission -

7Y decay emission

K+ LAT data

_%%_4

Particle distribution:
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( Masque et al. 2012; Qiu et al., 2019)
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+ Final remarks

- We performed a detailed source identification concluding that the HH 80-81 protostellar
system is the most probable candidate for producing the detected gamma rays. Protostars
driving jets can produce detectable gamma rays.

- The conditions present on a protoste
oroducing gamma rays from a le

accelerated protons in this objects.

lar jet indicate that the only possible mechanism for

otonic population is relativistic Bremsstrahlung.

Meanwhile, gamma rays present a unique window for studying the presence of

- The kinetic energy contained in the particle distribution leaves the door open to a potential
proton acceleration, while the definite nature of the accelerated particles remains unclear.

Stay tune for future papers!

12
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Abstract

Context. Protostellar jets driven by massive protostars are collimated outflows producing high-
» : speed shocks through dense interstellar medium. Fast shocks can accelerate particles up to

0‘.’

relativistic energies via diffusive shock acceleration, producing non-thermal emission that can

generate Y-ray photons. HH 80-81 is one of the most powerful collimated protostellar jets in our

oo Galaxy, with non-thermal emission detected in radio, X-ray, and y-ray bands. Characterizing the
axy. y y g

-ray emission that originates in the accelerated particles of the region is crucial for
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Maximum energy constrained by: lgg";{("a(tj:"
- Escape of particles (Hillas).

- Age of the system.
- Radiative looses.
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