from Alpha Magnetic Spectrometer

on the International Space Station

Latest Results
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AMS on the Space Station

Provides precision, long-duration
measurements of charged cosmic rays
to study the Origin of the Cosmos,
the physics of Dark Matter and Antimatter

A space version of a precision detector
used at accelerators.
5mx4m x 3m, 7.5 tons




The detectors provide independent information of cosmic rays
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In 14 years, AMS have collected over

6x10° events of elementary particles and

nuclei up to multiple TeV.

\
B \ \
109 | 1 | | I 1 1 | | | I I I | | I I I ] | | I I I | | 1 i

8 | he Precise spectroscopy of _
10 | charged cosmic ray 3
107? C =

N T
10° Be | N
W |\ W (\ Ne Mg i

° Na
10 F [\ /\Alq s
10* [\ ﬂ Pha k
10°
10° | |

| | | | | | Il | | | | | | | I | | | | I | | | |
i 5 10 15 20 25

Nuclear Charge



AMS Upgrade: New 4+4m? Silicon Tracker Planes

Acceptance increased to 300%,

P':ﬂE;U Reduce background for high-Z nuclei measurement
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The positron flux is the sum of low-energy part from cosmic ray collisions
plus a high-energy part from pulsars or dark matter with a cutoff energy
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The electron spectrum fits well with two power laws (a, b)

and _

Empirical model: e~ (E) = = (C EYe + C,EY? + Positron Source Term)
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AMS Positron Spectrum and Dark Matter
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By 2030, AMS will ensure that the high energy positron spectrum drops off quickly in the 0.2-2 TeV region and the
highest energy positrons only come from cosmic ray collisions as predicted in dark matter model 9



Positron Anisotropy To be presented

North-South by Inaki Garcia

direction
East-West

direction :  Pulsar

&

Forward-Backward Astrophysical point sources will imprint a higher
direction anisotropy on the arrival directions of energetic
positrons than a smooth dark matter halo.

Solar System

Dipole anisotropy: § = 3,/C{/4m C;is the dipole moment

Isotropic map
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Currently at 95% C.I.:
AMS for 16 < E < 500 GeV
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Cosmic Antiprotons and Positrons
Above 60 GeV, the p and et fluxes have identical rigidity dependence
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New Results on Elementary Particles (e+, e-, p, p)

in the Heliosphere over an 11-year Solar Cycle (2011-2022)
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Unique information for understanding solar modulation
as a function of mass, charge, and spectral shape

To be presented
by H.Y. Chou
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Precision measurement’sﬁofCo"smic Ray Nuclei in the GeV-TeV energy range
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Primaries p, He, C, O,
Si, ..., Fe are produced
in stars and accelerated
by supernovae.
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Secondaries Li, Be, B, and F are

with the interstellar medium

produced by the collision of Primaries

Measurements of the cosmic ray nuclei fluxes are important in understanding their origin, acceleration, and

propagation processes in the Galaxy.
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Light Nuclei2<Z2<8
He-C-O primaries compared
with Li-Be-B secondaries
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To be presented
by Z. Liu, J. Zhang

Light and heavy nuclei each have two distinct classes N



Composition of Cosmic Nuclei
AMS result show that all nuclei fluxes can be presented as a weighted sums of
the characteristic primary flux (O, Si) and a characteristic secondary flux (B, F)
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—— D=0+ . ] Carbon is NOT pure primary.
i Oc= 0.83xDy; Oc= 0.70xPp] They have significant
secondary component

Model-independent
measurements of the
relative abundances
at the source (before
cosmic ray propagation):
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Traditional primary cosmic rays Ne, Mg, and S have a significant secondary component.
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0Odd-Z nucle

i have more secondaries than even-Z
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Primary and Secondary Decomposition for All Cosmic Ray Fluxes
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With the LO upgrade AMS will provide precision measurement
of the high-Z elements at the highest energy



Protons

Precision measurement of isotopes by AMS

Unique information on origin and propagation of cosmic rays.
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Origin of Cosmic Deuterons
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To be presented
by F. Nicolds
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The AMS results disagree with the latest model with D as secondary cosmic rays
Deuterons have a significant primary component
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Origin of Cosmic Lithium
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Above ~7 GV, the rigidity dependence of éLi and ’Li fluxes are identical.
Excludes the existence of a sizable primary component in the “Li flux
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New Results on Beryllium Isotopes

propagate in the entire galactic halo,
10Be decay before reaching the boundary of the Galaxy.

measures the Galactic halo size L
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by D. Krasnopevtsev
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In 14 years on the ISS,
AMS is providing cosmic ray information with ~1% accuracy with energies up to multi-TeV.

We look forward to more exciting discoveries.
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