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Evidence of a SGWB
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PTA collaborations report evidence for a SGWB at 3.5 - 4 σ level
NANOGrav, arXiv:2306.16213 [astro-ph.HE] EPTA and InPTA, arXiv:2306.16214 [astro-ph.HE]

PPTA, arXiv:2306.16215 [astro-ph.HE] CPTA, arXiv:2306.16216 [astro-ph.HE]
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What is the origin of the observed signal?
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There is one expected astrophysical source of SGWB
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or the specific locations and strengths of power-law deviations.
Despite these uncertainties, the sensitivity range of PTAs is
sufficiently narrowband that it is reasonable, to first approx-
imation, to model the signal by a power law in this frequency
range:
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where ΦBHB/Δf is the timing residual PSD (see Equation (6)).
Following Middleton et al. (2021), we can gain some insight

into the allowed range of values for the amplitude, ABHB, and
slope, γBHB, of this power law by simulating a large number of
SMBHB populations covering the entire range of allowed
astrophysical parameters. Specifically, we consider the
SMBHB populations contained in the GWOnly-Ext library
generated as part of the NG15smbh analysis (and discussed in
additional detail there). This library was constructed with the
holodeck package (L. Z. Kelley et al. 2023, in preparation)
using semianalytic models of SMBHB mergers. These models
use simple, parameterized forms of galaxy stellar mass
functions, pair fractions, merger rates, and SMBH-
mass versus galaxy-mass relations to produce binary popula-
tions and derived GWB spectra. While some parameters in
these models are fairly well known (e.g., concerning the galaxy
stellar mass function), others are almost entirely unconstrained
—particularly those governing the dynamical evolution of
SMBHBs on subparsec scales (Begelman et al. 1980). The
GWOnly-Ext library assumes purely GW-driven binary
evolution and uses relatively narrow distributions of model
parameters based on literature constraints from galaxy-merger
observations (e.g., Tomczak et al. 2014) in addition to more
detailed numerical studies of SMBHB evolution (e.g.,
Sesana 2013).

For each population contained in the GWOnly-Ext library,
we perform a power-law fit of the corresponding GWB
spectrum across the first 14 frequency bins that we use in our
analysis. The distribution for ABHB and γBHB obtained in this
way is reported in Figure 1 (blue contours) and compared to the
results of a simple power-law fit to the GWB signal in the
NG15 data set (green contours). The 95% regions of the two
distributions barely overlap, signaling a mild tension between
the astrophysical prediction and the reconstructed spectral
shape of the GWB. In view of this observation, we stress again
that while these simulated populations are consistent with
systematic investigations of the GWB spectrum (e.g.,
Sesana 2013), they assume circular orbits and GW-only driven
evolution. Adopting models that include either significant
coupling between binaries and their local environments or very
high eccentricities could serve to flatten the spectral shape and
lead to SMBHB signals that better align with the observed data
(see NG15smbh for an extended discussion). Neither of these
effects, however, is expected to significantly impact the
amplitudes of the predicted spectra that, for expected values
of astrophysical parameters, remain in mild tension with
observed data. As discussed in NG15smbh, in order to
reproduce the observed amplitude, SMBHB models require
one or more of the astrophysical parameters describing the
binaries’ population to differ from expected values. For the
present analysis, the spectra derived from the GWOnly-Ext
library thus represent a convenient benchmark that is simple,
well defined, and easy to use. By using theory-motivated
priors, our reference model constitutes an important step

toward a more realistic modeling of the GWB spectrum from
inspiraling SMBHBs that goes beyond a power-law parameter-
ization with spectral index γBHB= 13/3, which has been the
standard reference model in much of the PTA literature over
the past decades.
The black dashed contours in Figure 1 show the results of a

2D Gaussian fit to the distribution of ABHB and γBHB values
derived from the simulated SMBHB populations (see
Equation (A1) in Appendix A for the parameters of this
Gaussian distribution). This fitted distribution is what we adopt
as a prior distribution for ABHB and γBHB in all parts of the
analysis described in this paper.

5. GWB Signals from New Physics

In this section, we discuss the GWB produced by various
new-physics models and investigate each model alone and in
combination with the SMBHB signal as a possible explanation
of the observed GWB signal. For each model, we give a brief
review of the mechanism behind the GWB production and
discuss the parameterization of its signal prediction. We report
the reconstructed posterior distributions of the model para-
meters and compute the Bayes factors against the baseline
SMBHB interpretation. In Figure 2, we show a summary of
these Bayes factors; in Figure 3, we present median
reconstructed GWB spectra in the PTA band for a number of
select new-physics models; and in Figure 4, we show similar
median reconstructed GWB spectra in the broader landscape of
present and future GW experiments.
As discussed in Section 4 and in more detail in NG15smbh,

there is a mild tension between the NG15 data and the
predictions of SMBHB models. The models generally prefer a
weaker and less blue-tilted h2ΩGW spectrum than the data. This
discrepancy presents an opportunity for new-physics models to
fit the data better than the conventional SMBHB signal.

Figure 1. Comparison of the 68% and 95% probability regions for the
amplitude and slope of a power-law fit to the observed GWB signal (green
contours) and predicted for purely GW-driven SMBHB populations with
circular orbits (blue contours; NG15smbh). The black dashed lines represent a
2D Gaussian fit of the blue contours. The vertical red line indicates γ = 13/3,
the naive expectation for a GWB produced by a GW-driven SMBHB
population (Phinney 2001).
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The Astrophysical Journal Letters, 951:L11 (56pp), 2023 July 1 Afzal et al.

NANOGrav, arXiv:2306.16219 [astro-ph.HE]

The observed signal 
is in tension with the 
power-law predicted 
from astrophysical 

models

This motivates the exploration of alternative explanations 

Supermassive Black Holes Binaries
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First order phase transitions
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A scalar field in a local minimum can tunnel 
to the true minimum via bubble nucleation
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The bubble nucleation can generate GW via bubble 
collision, sound waves and plasma turbulence
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How to compute the action?
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2 The tunnelling potential formalism

The core module of ELENA is the implementation of the tunnelling potential formalism [24] 1, which is
used to compute the tunnelling action for the decay of a scalar field ω from a metastable false vacuum
state ω+, to a true vacuum state ω→. In the seminal work [26], it was demonstrated that, under
the assumption that solutions are O(d)-symmetric and given a potential V (ω), the field configuration
ωb(ε) that interpolates between ω+ and the basin of ω→ obeys the so-called ‘bounce equation’

ω̈(ε) + d → 1
ε

ω̇(ε) = V ↑(ω) , (1)

where the dot and prime represent the derivative with respect to ε and ω, respectively, and ε =
√

ϑ2 + |ϖx|2 is the Euclidean radius in d dimensions (with ϑ the Euclidean time). Equation (1) is
complemented by the boundary conditions

ω̇b(0) = 0, lim
ω↓↔

ωb(ε) = ω+, (2)

which ensures that the solution remains non-singular at the origin and that the field remains in the
false vacuum state far from the nucleated bubble. Once the solution ωb(ε) is known, the tunnelling
action can be determined by inserting it into the d-dimensional Euclidean action

SE,d = 2ϱd/2

!(d/2)

∫ ↔

0

[1
2 ω̇2

b + V (ωb) → V (ω+)
]

εd→1dε. (3)

Equation (1) with the boundary conditions in Equation (2) has an intuitive classical mechanics in-
terpretation: by identifying ω as the position of a classical particle subject to a potential →V and to
a friction term that decreases over time as ε→1, with ε being the time variable, the solution to the
problem is equivalent to finding the position ω0 such that the particle, starting at rest from ω = ω0

at ε = 0, rolls down and exactly stops at ω = ω+. It is clear from Figure 1 that the solution to
this problem is an unstable point [26]: values of ω slightly larger than ω0 will result in the particle
overshooting the point ω+ and rolling away from it, while slightly smaller values make the particle
roll back and oscillate around the local minimum of →V (corresponding to the maximum of V ). This
observation is the basis for a popular numerical recipe [19] to solve Equations (1) and (2), known as
the overshoot-undershoot method: it amounts to solving the equations of motion for a trial value of
ω0. Depending on the asymptotic behaviour of the field value (that is, depending on whether the
trajectory undershoots or overshoots ω+), the initial position ω0 is displaced closer or further from the
top. This procedure is iterated until the required numerical precision is reached.
The undershoot-overshoot method can be numerically demanding, given that small deviations from
the correct value of ω0 result in large di!erences of the asymptotic field value from ω+. In addition,
the convergence time of the solution tends to infinity for infinitesimal energy di!erences between the
false and true vacua, although analytical solutions for this regime are known [26].

1
This formalism has also been extended to multi-field potentials [25], although ELENA focuses on one-field potentials

in its first version.
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Need to solve the "bounce equation"…

2 The tunnelling potential formalism

The core module of ELENA is the implementation of the tunnelling potential formalism [24] 1, which is
used to compute the tunnelling action for the decay of a scalar field ω from a metastable false vacuum
state ω+, to a true vacuum state ω→. In the seminal work [26], it was demonstrated that, under
the assumption that solutions are O(d)-symmetric and given a potential V (ω), the field configuration
ωb(ε) that interpolates between ω+ and the basin of ω→ obeys the so-called ‘bounce equation’

ω̈(ε) + d → 1
ε

ω̇(ε) = V ↑(ω) , (1)

where the dot and prime represent the derivative with respect to ε and ω, respectively, and ε =
√

ϑ2 + |ϖx|2 is the Euclidean radius in d dimensions (with ϑ the Euclidean time). Equation (1) is
complemented by the boundary conditions

ω̇b(0) = 0, lim
ω↓↔

ωb(ε) = ω+, (2)

which ensures that the solution remains non-singular at the origin and that the field remains in the
false vacuum state far from the nucleated bubble. Once the solution ωb(ε) is known, the tunnelling
action can be determined by inserting it into the d-dimensional Euclidean action

SE,d = 2ϱd/2

!(d/2)

∫ ↔

0

[1
2 ω̇2

b + V (ωb) → V (ω+)
]

εd→1dε. (3)

Equation (1) with the boundary conditions in Equation (2) has an intuitive classical mechanics in-
terpretation: by identifying ω as the position of a classical particle subject to a potential →V and to
a friction term that decreases over time as ε→1, with ε being the time variable, the solution to the
problem is equivalent to finding the position ω0 such that the particle, starting at rest from ω = ω0

at ε = 0, rolls down and exactly stops at ω = ω+. It is clear from Figure 1 that the solution to
this problem is an unstable point [26]: values of ω slightly larger than ω0 will result in the particle
overshooting the point ω+ and rolling away from it, while slightly smaller values make the particle
roll back and oscillate around the local minimum of →V (corresponding to the maximum of V ). This
observation is the basis for a popular numerical recipe [19] to solve Equations (1) and (2), known as
the overshoot-undershoot method: it amounts to solving the equations of motion for a trial value of
ω0. Depending on the asymptotic behaviour of the field value (that is, depending on whether the
trajectory undershoots or overshoots ω+), the initial position ω0 is displaced closer or further from the
top. This procedure is iterated until the required numerical precision is reached.
The undershoot-overshoot method can be numerically demanding, given that small deviations from
the correct value of ω0 result in large di!erences of the asymptotic field value from ω+. In addition,
the convergence time of the solution tends to infinity for infinitesimal energy di!erences between the
false and true vacua, although analytical solutions for this regime are known [26].

1
This formalism has also been extended to multi-field potentials [25], although ELENA focuses on one-field potentials

in its first version.

4

…and then insert the solution in the action integral

°
V

(¡
)

V
(¡

)

¡+ ¡0 ¡°

S. R. Coleman, Phys. Rev. D 15 (1977), 2929-2936



Michele Lucente - Università di Bologna TeVPA 2025

Overshoot-undershoot method
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Figure 11: The one-dimensional shooting method. The regions of the upturned potential are
colored by the result of a shot from that position. At the boundary between overshots (green)
and undershots (red), there exists a solution (blue) that asymptotically lands at the false
vacuum.

such that the bounce action may be written purely as kinetic or potential contributions,

SE = 2
d
ST = 2

2 → d
SV. (3.38)

Incidentally, by considering ω2SE/ωa2
|a=1, we may see that the dilatation ε(aϑ) corresponds to

the negative eigenvalue.
We may think of this as an unusual mechanics problem involving a particle in an upturned

potential, where ϑ plays the role of time and ε plays the role of position. In this case, we
seek a solution whereby a particle begins at rest near the global maximum, rolls down through
the local minimum and comes to rest at the local maximum. The damping required to stop
the particle shooting over the local maximum was provided by an unusual friction term that
decreases with time as 1/t. This is illustrated in Fig. 9. Although in this formulation energy is
no longer manifestly conserved, there remains a symmetry ϑ ↑ →ϑ such that were particle to
start at ϑ = →↓, it would climb up to the starting position at ϑ = 0 and then bounce back.
The outstanding challenge, then, is to solve Eq. (3.33) subject to the boundary conditions in
Eq. (3.34). This amounts to finding the approximate coordinates ε0 ↔ ε(ϑ = 0) from which the
particle begins at rest and would subsequently roll to the false vacuum. This can be simple for
a single scalar field, but challenging for even two or more. We discuss this numerical challenge
in the next section.

3.4 Computing the bounce

Coleman [101] proved that a bounce solution always exists for one scalar field with a true
and false vacuum by an overshot/undershot argument. First, note that the friction term is
dissipative,

d
dϑ

(1
2 ε̇

2
→ V (ε)

)
= →

d → 1
ϑ

ε̇2
↗ 0. (3.39)

Thus, as illustrated in Fig. 11, for one-field it is easy to see by conservation of energy that there
always exist starting positions from which the particle would fail to reach the false vacuum —
it would undershoot and roll back into the well. Similarly, by starting su!ciently close to the
true vacuum, the particle can wait until friction which falls as 1/t becomes negligible and roll
over and past the false vacuum. By continuity, between these cases there must exist a bounce

37

C. L. Wainwright, arXiv:1109.4189 [hep-ph]

Popular 
numerical 

recipe: 

1. Solve the equations of motion for a trial value of ϕ0;

2. Adjust the initial position ϕ0 depending on the asymptotic behaviour;

3. Iterate until the desired numerical precision is reached.

Figure from: P. Athron, C. Balázs, A. Fowlie, L. Morris and L. Wu, arXiv:2305.02357 [hep-ph]

small deviations from the correct ϕ0 value can result 
in large differences of the asymptotic field value

The solution is an unstable point:

Used in many public codes, but can be numerically demanding
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Tunnelling potential formalism
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J. R. Espinosa, arXiv:1805.03680 [hep-th]
It is possible to redefine the equations of motion

�
V

(�
)

V
(�

)

�+ �0 ��

Figure 1: Pictorial representation of the classical mechanical dual of the bounce equations of mo-
tion, Equations (1) and (2). Upper panel: a classical particle at position ω is subject to the potential
→V (ω), with a friction term that decreases with time ε (see Equation (1)). The solution satisfying
the boundary conditions in Equation (2) amounts to finding the value of ω0 such that the particle,
starting at rest from ω = ω0 at ε = 0, stops at ω = ω+ for ε ↑ ↓. Lower panel: the scalar field
nucleates via an O(d)-symmetric field configuration, with value ω0 at ε = 0 and ω+ at ε ↑ ↓, where
ε is the Euclidean radius in d dimensions. The field profile at finite values of ε is determined by the
solution ωb(ε) to Equations (1) and (2).

The tunnelling potential formalism [24] addresses the numerical issues of the bounce formalism by
redefining the equations of motion, such that the correct value of ω0 becomes a minimum of the so-
called tunnelling action. The numerical advantage is twofold: first and foremost, finding the minimum
of a function is much easier than finding a saddle point. Moreover, it is possible to completely remove
the dependency on the bounce equations Equations (1) and (2), so that no di!erential equation needs
to be numerically integrated.
The tunnelling potential is an auxiliary function defined as

Vt(ω) ↔ V (ω) →
1
2 ω̇2

b , (4)

where ωb is the solution to the bounce equations (Equations (1) and (2)). As demonstrated in Ref. [24],
Vt(ω) is a monotonic function with Vt(ω) ↗ V (ω), and is defined only in the range ω ↘ [ω+, ω0], with
Vt = V at the endpoints. As anticipated, it is possible to remove the dependence on the bounce

5

solution ωb by employing the relation

ω̇b = →

√
2 [V (ω) → Vt(ω)], (5)

as well as on the radial variable by using

ε = (d → 1)
√

V → Vt

(V →
t )2

. (6)

The new equations of motion are given by

(
V →

t

)2 = d → 1
d

[
V →V →

t → 2 (Vt → V ) V →→
t

]
, (7)

with boundary conditions

Vt (ω+) = V (ω+) , Vt (ω0) = V (ω0) . (8)

The new problem is to find the correct value of ω0 and the form of Vt(ω) that solves Equations (7)
and (8). Although this does not seem an easier task with respect to the starting point in Equations (1)
and (2), as demonstrated in Ref. [24], one does not need to solve this di!erential equation in practice.
An excellent approximation for Vt can indeed be derived by considering the shape of the scalar potential
V ; together with the observation that ω0 is a minimum of the tunnelling action SE,d, given by

SE,d = (d → 1)(d↑1) (2ϑ)
d
2

!
(
1 + d

2

)
∫ ω0

ω+

(V → Vt)
d
2

|V →
t |

(d↑1)
dω, (9)

this allows to apply the following numerical algorithm to solve the problem:

Construct an approximation to Vt(ω) following the procedure outlined in Ref. [24], and then
insert it in Equation (9), computing SE,d as a function of ω0. The solution to the problem is
given by the value of ω0 that minimises SE,d.

This is exactly the numerical procedure implemented in ELENA, contained in the class espinosa.Vt_vec

and described in more detail in the following Sections.
In Figure 2 we report an example of the formalism. In the left panel, we show the potential V (ω)
(black line) together with the tunnelling potential Vt(ω, ω̃0). This notation means that Vt is constructed
following the prescription in Ref. [24] for an arbitrary value ω̃0 of the field at the centre of the nucleated
bubble, which is not necessarily the solution to the equations of motion. The correct form for Vt, which
is the one constructed by choosing the value ω̃0 = ω0 minimising the tunnelling action, is shown as
a blue line. We notice that, for values of ω̃0 that are excessively far-away from the correct one, the
construction in Ref. [24] breaks down as Vt is no longer monotonically decreasing; we identify these
problematic tunnelling potentials by gray lines, while the well-behaved ones are identified by orange
lines. This behaviour is nevertheless not an issue for the numerical routine, since the action SE,d(ω̃0)
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The new problem is to find the correct value of ω0 and the form of Vt(ω) that solves Equations (7)
and (8). Although this does not seem an easier task with respect to the starting point in Equations (1)
and (2), as demonstrated in Ref. [24], one does not need to solve this di!erential equation in practice.
An excellent approximation for Vt can indeed be derived by considering the shape of the scalar potential
V ; together with the observation that ω0 is a minimum of the tunnelling action SE,d, given by
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this allows to apply the following numerical algorithm to solve the problem:

Construct an approximation to Vt(ω) following the procedure outlined in Ref. [24], and then
insert it in Equation (9), computing SE,d as a function of ω0. The solution to the problem is
given by the value of ω0 that minimises SE,d.

This is exactly the numerical procedure implemented in ELENA, contained in the class espinosa.Vt_vec

and described in more detail in the following Sections.
In Figure 2 we report an example of the formalism. In the left panel, we show the potential V (ω)
(black line) together with the tunnelling potential Vt(ω, ω̃0). This notation means that Vt is constructed
following the prescription in Ref. [24] for an arbitrary value ω̃0 of the field at the centre of the nucleated
bubble, which is not necessarily the solution to the equations of motion. The correct form for Vt, which
is the one constructed by choosing the value ω̃0 = ω0 minimising the tunnelling action, is shown as
a blue line. We notice that, for values of ω̃0 that are excessively far-away from the correct one, the
construction in Ref. [24] breaks down as Vt is no longer monotonically decreasing; we identify these
problematic tunnelling potentials by gray lines, while the well-behaved ones are identified by orange
lines. This behaviour is nevertheless not an issue for the numerical routine, since the action SE,d(ω̃0)
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ELENA: EvaLuator of tunnElliNg Actions
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https://github.com/michelelucente/ELENA

We implemented the tunnelling potential formalism in a new public Python code

ELENA also provides all the tools to compute the SGWB from FOPT 
(from the Lagrangian parameter inputs to the final gravitational waves spectrum) 

in a fast and self-contained implementation

https://github.com/michelelucente/ELENA
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Going beyond approximations:

9

The fast computation of the tunnelling enables the use of integral 
expressions that track the complete evolution of the transition
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ELENA employs ~ 20 milliseconds for tunnelling computation on Apple M2 processor
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Slow transition

I. Milestone temperatures computation
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critical analysis of the validity of its assumptions.
The extended volume in true vacuum is obtained by summing the volumes of the single bubbles
nucleated up to a given time t. By assuming a homogeneous rate of bubble nucleation per unit volume
and unit time !(t), the corresponding expression in a static Universe reads

V
ext
t,static =

∫ t

t0
dt→!

(
t→) V

(
t→, t

)
, (14)

where t0 is the time corresponding to the critical temperature Tc and V (t→, t) is the volume at time t

of a bubble that nucleated at time t→. Under the assumption of spherically symmetric bubbles, it is
given by

V (t, t→) = 4ω

3 R(t, t→)3, (15)

with the radius at time t given by

R(t, t→) = R0(t→) +
∫ t

t→
dt→→vw(t→→), (16)

where R0 is the initial bubble radius and vw the bubble wall velocity. Assuming that a bubble rapidly
grows to a radius much larger than R0(t→), and that the wall rapidly accelerates to its final constant
velocity vw, taken to be a homogeneous parameter in the Universe, one gets

V (t, t→) = 4ω

3

[
vw

∫ t

t→
dt→→

]3

, (17)

where we keep the explicit form of the time integral for subsequent generalisation to the case of an
expanding Universe. The expression for the extended volume thus reads

V
ext
t,static(t) = 4ω

3 v3

w

∫ t

t0
dt→!(t→)

[∫ t

t→
dt→→

]3

. (18)

The generalisation to an expanding universe is readily obtained. First, we must appropriately scale
the nucleation rate to reflect the change in unit volume over time

∫ t

t0
dt→!(t→) →

∫ t

t0
dt→!(t→)

(
a(t→)
a(t)

)3

, (19)

where we have chosen to normalise the unit volume at time t. Then, we must account for the fact
that the radius of a bubble increases both because of proper motion and because of the expansion of
the Universe ∫ t

t→
dt→→

→

∫ t

t→
dt→→ a(t)

a(t→→) . (20)

Thus, the extended volume in an expanding universe finally reads

V
ext
t (t) = 4ω

3 v3

w

∫ t

t0
dt→!(t→)

(
a(t→)
a(t)

)3 [∫ t

t→
dt→→ a(t)

a(t→→)

]3

. (21)

One would like to express Equation (21) as a function of temperature, given that dynamical quantities
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relevant to phase transition processes in the early Universe are more conveniently computed as a
function of temperature rather than time. A common assumption usually employed in the literature
is the use of the MIT bag equation of state [46], under which the following equalities hold

dt

dT
bag= →

1
H(T )T ,

a(t1)
a(t2)

bag= T2

T1

. (22)

Moreover, the energy density of the Universe is often taken to be radiation dominated, setting the
functional form for the Hubble expansion rate H(T ). These assumptions are valid for fast transitions
in which the amount of vacuum energy released in the FOPT is subdominant with respect to the
radiation energy density at the time. However, they do not necessarily hold for strong supercooled
phase transitions, in which most of the Universe remains in the false vacuum during a period in
which the temperature can drop significantly. Given that the radiation contribution scales as ω ↑ T 4

while the vacuum energy density V (ε+, T )→V (ε→, T ) generally increases for smaller temperatures (cf.
e.g. Figures 4 and 5), strong supercooled phase transitions can exhibit periods of vacuum domination,
or at least feature regimes where the vacuum and radiation contributions are comparable.
To properly account for these scenarios, ELENA employs a more general relation [47] between time and
temperature that only assumes the adiabatic expansion of the Universe, and includes the contributions
from both the Standard Model (SM) and BSM fields to the potential, in order to evolve the temperature
over time

dT

dt
= →3H(T ) ϑT V T(ε+(T ), T )

ϑT T V T(ε+(T ), T ) ,
a(t1)
a(t2) = exp

(∫ t1

t2
dt↑H(t↑)

)
, (23)

where ϑT V = ϑV/ϑT , ϑT T V = ϑ2V/ϑT 2 and V T is meant to refer to the total potential, including
the (T -dependent but ε-independent) SM component and the contribution from BSM fields. The
expression used in ELENA for the computation of the extended volume thus reads

V
ext
t (T ) = 4ϖ

3 v3

w

∫ Tc

T
dT ↑ !(T ↑)

3H(T ↑)
ϑT T V T(T ↑)
ϑT V T(T ↑)

(
a(T ↑)
a(T )

)3
[∫ T →

T
dT ↑↑ 1

3H(T ↑↑)
ϑT T V T(T ↑↑)
ϑT V T(T ↑↑)

a(T )
a(T ↑↑)

]
3

, (24)

with the ratio of scale factors given by

a(T1)
a(T2) = exp

(∫ T2

T1
dT ↑ 1

3
ϑT T V T(T ↑)
ϑT V T(T ↑)

)

. (25)

The actual computation is performed by the function temperatures.compute_logP_f, as exemplified in
the Listing 4.

1 from temperatures import compute_logP_f

2

3 logP_f , Temps , ratio_V , Gamma , H = compute_logP_f (dp , V_min_value , S3overT , v_w = 1,

units = ’MeV ’)

Listing 4: Computation of the fraction of Universe volume in false vacuum.

The function temperatures.compute_logP_f takes as required arguments the model class instance and
two dictionaries, containing for each key temperature value the corresponding value of the potential
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ELENA only assumes adiabatic expansion

Bag equation of state

Radiation dominated Universe

Fast and precise 
computation of

Nucleation (Tn) 

Percolation (Tp) 

Completion (Te)

temperatures

P. Athron, C. Balázs, A. Fowlie, L. Morris and L. Wu, arXiv:2305.02357 [hep-ph]

at the true minimum and the tunnelling action (dp, V_min_value, S3overT in the Listing 4), computed
in the Listings 1 and 3 in our example. Optional arguments are the asymptotic wall velocity (v_w, set
by default to 1) and the units for dimensionful quantities (units, default ’GeV’). The function returns
the natural logarithm of Pf (T ) as an array (logP_f), where each entry corresponds to its value at the
temperature reported in the same entry in the array Temps (sorted in increasing values of temperature).
For convenience, the function also returns the arrays ratio_V, Gamma, H, which contain the values of
ωT T V T/ωT V T(T ), !(T ) and H(T ) for each temperature contained in Temps, so that they can be stored
and used in other computations or consistency checks.

3.5 Computation of transition milestone temperatures

The knowledge of Pf (T ) allows for the computation of the temperatures at which important milestones
in the transition are reached. We show in this section how ELENA can be used to compute the
nucleation, percolation and completion temperatures, taking into account the full evolution of
the transition.
The nucleation temperature Tn is defined as the moment when there is, on average, one nucleated
bubble per Hubble volume. A commonly adopted heuristic criterion for estimating Tn in the literature
is

! (Tn)
H4 (Tn) → 1, (26)

where ! is the false vacuum decay rate Equation (12) and H is the Hubble parameter. For transi-
tions at the electroweak scale, an even simpler estimation is often adopted 5, given by the condition
SE,3(TN )/TN ↑ 140.
Despite being a commonly employed quantity to characterise the temperature at which a FOPT
takes place, the nucleation temperature does not represent a relevant physical quantity in the char-
acterisation of the FOPT dynamics; its extended usage in the literature has mainly been due to its
simple numerical implementation, given that it does not require the determination of the false vac-
uum fraction. Indeed, it is possible to find realisations in which the phase transition takes place but
the nucleation criterion is never met [47], particularly in the context of supercooled phase transitions.
Nevertheless, we stress here that the nucleation temperature gives the correct estimate for the relevant
transition temperature in the case of fast transitions.
ELENA provides the function temperatures.N_bubblesH to compute the average number of nucleated
bubbles per Hubble volume as a function of temperature, by using the general equation [45]

N(t) = 4ε

3

∫ t

tc

dt→ ! (T (t→)) Pf (t→)
H3 (t→) , (27)

from which the nucleation time tn can be derived by looking for the solution N(tn) = 1. The usage of
temperatures.N_bubblesH is exemplified in the Listing 5.

1 from temperatures import compute_logP_f , N_bubblesH

2

5
This is for example the default criterion in CosmoTransitions, see e.g. [19].
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Figure 5: Same as in Figure 4, but for the “Slow” point in Table 2.

to the JMAK equation [38–44], which is given by:

Pf (T ) = exp
(
→V

ext
t (T )

)
, (13)

where V
ext
t (T ) is the extended volume in true vacuum at a given temperature. The extended volume

is defined as the volume that all nucleated bubbles would occupy, assuming a nucleation probability
given by !(T ), while neglecting the fact that a fraction of this volume may have already been converted
to true vacuum at that temperature. This amounts to considering processes such as the nucleation
of a new bubble inside a region of true vacuum, or double-counting the volume when two bubbles
grow into each other. V

ext
t (T ) clearly gives a strong overestimate of the real fraction of volume in true

vacuum (from which the “extended” adjective). Nevertheless, it has been demonstrated that, under
reasonable assumptions, the fraction of the Universe in the false vacuum state is correctly related
to V

ext
t via Equation (13). We refer the reader to Ref. [45] for a thorough discussion on the JMAK

equation in the context of cosmological phase transitions, including multiple derivations of it and a
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II. Physical volume evolution

11

In an expanding Universe, the expansion of bubbles 
competes with the expansion of space itself

vw vwa

3 nH = N_bubblesH (Temps , Gamma , logP_f , H, ratio_V )

Listing 5: Computation of the average number of nucleated bubbles per Hubble volume.

The function temperatures.N_bubblesH takes as arguments a series of arrays Temps, Gamma, logP_f, H,

ratio_V, corresponding to the output of the function temperatures.compute_logP_f, and returns an array
containing the average number of bubbles per Hubble volume at each temperature value in Temps.
Percolation is defined as the moment when a connected cluster of bubbles that spans the entire
Universe exists. The temperature at which it takes place characterises the peak frequency in the
gravitational wave spectrum from a FOPT [45], given that at percolation the majority of bubbles
responsible for the GW production have collided. It has been shown that a fully connected cluster of
bubbles almost certainly forms when a specific value of the true vacuum fraction has been reached [48–
50]; for cosmological phase transitions featuring uniformly nucleated spherical bubbles, this threshold
value is Pt → 0.29 [51–53]. Therefore, the percolation temperature Tp is defined by the equation

Pf (Tp) = 0.71. (28)

Percolation studies performed in the framework of solid state physics assume a static background,
but in cosmological scenarios, the expansion of the Universe must be taken into account, especially in
the case of slow supercooled phase transitions. In an expanding Universe, the expansion of bubbles
towards each other competes with the expansion of space itself, which tends to increase the physical
distance among bubbles. If the latter dominates, the bubbles might actually not collide, even if the
fraction of the Universe in the false vacuum Pf decreases with time. Therefore, a necessary condition
for the production of GW is that the physical volume in false vacuum, given by [54]

Vphys (t) = a3 (t) Pf (t) , (29)

is decreasing when the bubbles are assumed to collide, which corresponds to

dVphys

dt
= Vphys (t)

[ d
dt

ln (Pf (t)) + 3H (t)
]

↑ 0. (30)

We can track the evolution of Vphys(T ) with temperature by substituting Equation (23) into Equa-
tion (30), from which one finds that the physical volume in the false vacuum is decreasing at a given
temperature if the condition

d ln Pf

dT
↓

ωT T V T

ωT V T
(31)

is satisfied.
The percolation of bubbles in an expanding universe is questionable if Vphys is not decreasing at
Tp [47, 54, 55], although it is worth noticing that percolation studies in an expanding spacetime have
not been performed to this date [45], leaving open the question on how significantly the results can
change compared to the static scenario.
Finally, the completion temperature is defined as the one at which the value of Pf has decreased
below a certain threshold value, signalling that most of the Universe has been converted to the true
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Percolation studies performed in the framework of solid state physics assume a static background,
but in cosmological scenarios, the expansion of the Universe must be taken into account, especially in
the case of slow supercooled phase transitions. In an expanding Universe, the expansion of bubbles
towards each other competes with the expansion of space itself, which tends to increase the physical
distance among bubbles. If the latter dominates, the bubbles might actually not collide, even if the
fraction of the Universe in the false vacuum Pf decreases with time. Therefore, a necessary condition
for the production of GW is that the physical volume in false vacuum, given by [54]

Vphys (t) = a3 (t) Pf (t) , (29)

is decreasing when the bubbles are assumed to collide, which corresponds to

dVphys

dt
= Vphys (t)

[ d
dt

ln (Pf (t)) + 3H (t)
]

↑ 0. (30)

We can track the evolution of Vphys(T ) with temperature by substituting Equation (23) into Equa-
tion (30), from which one finds that the physical volume in the false vacuum is decreasing at a given
temperature if the condition

d ln Pf

dT
↓

ωT T V T

ωT V T
(31)

is satisfied.
The percolation of bubbles in an expanding universe is questionable if Vphys is not decreasing at
Tp [47, 54, 55], although it is worth noticing that percolation studies in an expanding spacetime have
not been performed to this date [45], leaving open the question on how significantly the results can
change compared to the static scenario.
Finally, the completion temperature is defined as the one at which the value of Pf has decreased
below a certain threshold value, signalling that most of the Universe has been converted to the true
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quadratic term in the Taylor expansion

!(t) = !n exp
[
ω(t → tn) →

1
2ε2(t → tn)2

]
, (41)

where tn is the nucleation time and !n = !(tn) is the false vacuum decay rate at nucleation. Time
can be related to temperature by

t → t0 =
∫ t

t0
dt =

∫ T (t0)

T (t)

dT →

3H (T →)
ϑT T V T (T →)
ϑT V T (T →) . (42)

ELENA provides the function GWparams.beta to readily extract the values of the ω and ε parameters
in Equation (41), by simply using as arguments the output of temperatures.compute_logP_f(cf. Listing 6),
a starting (T_nuc) and final (T_perc) temperatures, as well as an optional argument verbose (default False

) that controls its output. To avoid the appearance of dimensionful quantities that can be very small
and result in numerical instabilities, GWparams.beta normalises time in units of the Hubble expansion
rate at nucleation Hn, thus employing Hn(t → tn) as the independent variable, and extracting ω/Hn

and ε/Hn as coe!cients. The usage of GWparams.beta is demonstrated in the Listing 9.

1 from GWparams import beta

2

3 beta_Hn , gamma_Hn , times , Gamma_t , Temps_t , H_t = beta(Temps , ratio_V , Gamma , H,

T_nuc , T_perc , verbose = True)

Listing 9: Computation of the nucleation rate coe!cients.

The function GWparams.beta performs a fit of the numerically computed decay rate !(t) to the expression
in Equation (41), setting tn as the time of the starting temperature, and considering a time interval
extended until the final temperature. If verbose = False the function only returns the values of ω/Hn

(beta_Hn) and ε/Hn (gamma_Hn). If verbose = True the function also returns an ensemble of arrays,
containing in each element the corresponding values of Hn ↑ (t → tn) (times), !(t → tn) (Gamma_t),
T (t → tn) (Temps_t) and H(t → tn) (H_t), where the Q(t → tn) notation indicates that the Q quantity is
evaluated at di"erent (t → tn) time values 8.
The results of the numerical fit to Equation (41) for the “Fast” point in Table 2 are reported in Figure 16
for the evolution between the nucleation and percolation times. The left panel in the figure shows the
evolution of the temperature with time, from which it can be noted that percolation is reached after
2.6↑10↑2 unit times 1/Hn. On the right panel we report the numerical computation of the nucleation
rate (continuous line) and the expression computed by inserting the fit results (reported on the right-
side of the figure) into Equation (41). Clearly, the exponential nucleation is a very good approximation
for this point, with the ratio ε/ω = 0.04 indicating that the second-order term in the Taylor expansion
can be safely neglected. In this case, using the ω parameter to characterise the transition is justified.
Analogously, we report in Figure 17 the results of the numerical fit to the “Slow” benchmark point
in Table 2. As can be noted in the left panel and as expected, the duration of this transition is much

8
We write instead Hn → (t ↑ tn) to stress that this is a multiplication between the constant quantity Hn and the time

variable t ↑ tn.
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3.6.2 Mean bubble separation and transition duration

The amplitude and peak frequency of the SGWB produced by a FOPT strongly depend on the
characteristic length-scale of the transition, which can be specified using di!erent parameters, requiring
to choose one among them [45]. The parameter used as input in many numerical hydrodynamic
simulations that provide fits to the SGWB spectrum (cf. e.g. [65]) is the mean bubble separation

Rsep (t) = n (t)→ 1
3 , (38)

where n is the bubble number density [43] given by

n (t) =
∫ t

tc

dt↑!
(
t↑) Pf

(
t↑) a3 (t↑)

a3 (t) . (39)

Given that the use of Rsep is recommended over other possible length-scale choices [45], ELENA
implements the computation of the mean bubble separation with the function temperatures.R_sepH,
which returns a tuple of two floats, Rsep(T )H(T ) and Rsep. The first quantity normalises the mean
bubble separation to the Hubble radius, and is the one inputted in SGWB fits; the second quantity is
the dimensionful physical distance. The use of temperatures.R_sepH is exemplified in the Listing 8.

1 from temperatures import R_sepH

2

3 RH , R = R_sepH (Temps , Gamma , logP_f , H, ratio_V )

4 RH_interp = interpolation_narrow (Temps , RH , T_perc )

Listing 8: Computation of the mean bubble separation.

The function temperatures.R_sepH requires as arguments the outputs of temperatures.compute_logP_f, see
the Listing 4 and subsequent discussion. The arrays RH and R contain the value of Rsep(T )H(T ) and
Rsep(T ) for each temperature value in the array Temps. In the last line of Listing 8, the function
utils.interpolation_narrow is used to find the value of the mean bubble separation at the percolation
temperature, RH_interp. We report as a continuous curve in Figure 14 (Figure 15) the evolution of
Rsep(T )H(T ) for the “Fast” (“Slow”) benchmark point in Table 2. The temperatures of nucleation
(Tn), percolation (Tp) and completion (Te) are reported as vertical dashed, dotted and dot-dashed
lines, respectively. The horizontal dashed line represents the mean bubble separation at percolation
Rsep(Tp)H(Tp) = Rsep↓H↓, which is the parameter entering into the SGWB spectrum. Left panels
show the full range of transition temperatures, while right panels provide a zoomed view over the
temperature range between nucleation and completion. For the “Fast” transition in Figure 14 the
nucleation of bubbles is sizeable until the completion temperature Te, thus resulting in a relatively
small value of the mean bubble separation at percolation in units of the Hubble radius, (Rsep↓H↓)fast =
7.1 → 10→3. For the “Slow” transition in Figure 15, on the other hand, the nucleation of new bubbles
becomes ine!ective before the percolation temperature Tp, and the conversion of volume from false
to true vacuum mainly proceeds via the expansion of already nucleated bubbles. This results in a
slow increase in Rsep(T )H(T ) due to the expansion of the Universe, as expected from Equation (39),
even though the physical volume in the false vacuum is decreasing due to the bubbles walls expansion,
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ELENA computes the full SGWB spectrum for all the individual sources
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Currently implemented the expressions from
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Minimal Dark Sector model for SGWB

14

A particle physics model for a FOPT must include:

Scalar field to drive 
the phase transition

Gauge field make the 
transition 1st order

We demonstrated that a minimal dark sector composed of dark 
photon Z’ and complex scalar φ can generate the observed SGWB
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searches [145–149]. Higgs decays can also produce meta-
stable semi-visible fermions in the RDSM, which can be
searched for at the lifetime frontier of the LHC [150].

• Meson decays: light dark photons are effectively con-
strained by searches for visible resonances in ω0

→ εZ↑

decays [151]. Through a cascade of decays, dark photons
can also be produced in meson meson decays such as K →

h
↑
→ Z

↑
Z
↑ and K → ω(h↑ → Z

↑
Z
↑) or B → h

↑
→ Z

↑
Z
↑

and B → K(h↑ → Z
↑
Z
↑) via the mixing between the higgs

and the dark higgs [152–154]. The KL → 2(e+e
↓) de-

cays have been measured by KTEV [155] and NA48 [156]
(searches for KL → XX → 4ε have also been performed
by KOTO recently [157]), but no such measurement exists
for KS . A constraint on KS → 2(µ+µ↓) was recently im-
posed by LHCb [158] and searches for B decays to four
leptons have been performed by Belle [159]. Searches for
five charged tracks in kaon decays have been performed
for the first time with K

+
→ ω+2(e+e

↓) by NA62 [160]
and with KL → ω02(e+e

↓) by KOTO [161]. All afore-
mentioned channels set limits on ϑ2

hh↑
, as opposed to limits

on (ϖgD)2 from dark higgsstrahlung at e
+
e
↓ colliders dis-

cussed above.

• Searches at beam dumps: the decay in flight of the dark
photon is typically fast, but can lead to the production of
metastable, semi-visible dark states (i.e., the products of
their decays contain missing energy and visible particles).
The couplings controlling production and the lifetime of
the metastable dark partners are in general different. Be-
cause decays are generally faster in these models, beam
dumps with a small baseline and large acceptance like
SHiP could set strong bounds in the future. Much of the
literature in this case has focused on inelastic DM models.
For a non-exhaustive list of beam dump constraints and
sensitivity studies, see, e.g., [162–169].

• Fixed targets: the presence of displaced vertices and the

semi-visible decays of the dark photon can interfere with
the search for missing energy at fixed target experiments
like NA64 [170] and LDMX [171]. In this case, new
strategies dedicated to finding the displaced activity can
improve the sensitivity to RDS. For example, NA64 has
constrained semi-visible dark photons with both a dedi-
cated displaced vertex search [172] and with a rescast of
the invisible dark photons searches [94].

4.3. Dark Scalars and phase transitions in the Early Universe

Unlike in the SM, the interaction between the scalar and
gauge sectors in RDS scenarios can introduce richer dynam-
ics in the Early Universe. In fact, when the gauge symmetry
in the DS is spontaneously broken, it can lead to a FOPT. A
sufficiently supercooled FOPT generates a strong GW signal
that PTA observatories can probe. A DS FOPT is one of the
most compelling new physics explanations for the NANOGrav
Stochastic GW Background (SGWB) observation [173–179].
A signal in the nanohertz frequencies points toward a (sub-
)GeV DS vev [61, 173, 179–181].

An example [173] is given by a low-scale DS composed of a
complex scalar ϱ charged under a dark U(1)D gauge symmetry,
and the associated dark gauge boson Z

↑
µ

L =
(
Dµϱ
)↔

(Dµϱ) ↓
1
4

Z
↑

µςZ
↑µς
↓ V(ϱ↔ϱ), (3)

with V = ↓µ2
ϱϱ
↔ϱ + φϱ (ϱ↔ϱ)2. Assuming µ2

ϱ > 0, the dark
scalar breaks the symmetry by acquiring a vev vϱ = µϱ/

√
φϱ,

resulting in the mass spectrum m
2
Z↑
= g

2
D

v
2
ϱ and m

2
ϱ = 2φϱv2

ϱ.
While the frequency of the GW background observed by

NANOGrav sets the scale of new physics vϱ to be around the
(sub-)GeV scale, the fact that its duration is long, i.e. it is su-
percooled, calls for a very particular shape in the potential, re-
sulting in a nearly conformal scalar sector. This is realised if
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in the DS is spontaneously broken, it can lead to a FOPT. A
sufficiently supercooled FOPT generates a strong GW signal
that PTA observatories can probe. A DS FOPT is one of the
most compelling new physics explanations for the NANOGrav
Stochastic GW Background (SGWB) observation [173–179].
A signal in the nanohertz frequencies points toward a (sub-
)GeV DS vev [61, 173, 179–181].

An example [173] is given by a low-scale DS composed of a
complex scalar ϱ charged under a dark U(1)D gauge symmetry,
and the associated dark gauge boson Z

↑
µ

L =
(
Dµϱ
)↔

(Dµϱ) ↓
1
4

Z
↑

µςZ
↑µς
↓ V(ϱ↔ϱ), (3)

with V = ↓µ2
ϱϱ
↔ϱ + φϱ (ϱ↔ϱ)2. Assuming µ2

ϱ > 0, the dark
scalar breaks the symmetry by acquiring a vev vϱ = µϱ/

√
φϱ,

resulting in the mass spectrum m
2
Z↑
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2
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2
ϱ and m
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ϱ = 2φϱv2

ϱ.
While the frequency of the GW background observed by

NANOGrav sets the scale of new physics vϱ to be around the
(sub-)GeV scale, the fact that its duration is long, i.e. it is su-
percooled, calls for a very particular shape in the potential, re-
sulting in a nearly conformal scalar sector. This is realised if
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searches [145–149]. Higgs decays can also produce meta-
stable semi-visible fermions in the RDSM, which can be
searched for at the lifetime frontier of the LHC [150].

• Meson decays: light dark photons are effectively con-
strained by searches for visible resonances in ω0

→ εZ↑

decays [151]. Through a cascade of decays, dark photons
can also be produced in meson meson decays such as K →

h
↑
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↑
Z
↑ and K → ω(h↑ → Z

↑
Z
↑) or B → h

↑
→ Z

↑
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↑

and B → K(h↑ → Z
↑
Z
↑) via the mixing between the higgs

and the dark higgs [152–154]. The KL → 2(e+e
↓) de-

cays have been measured by KTEV [155] and NA48 [156]
(searches for KL → XX → 4ε have also been performed
by KOTO recently [157]), but no such measurement exists
for KS . A constraint on KS → 2(µ+µ↓) was recently im-
posed by LHCb [158] and searches for B decays to four
leptons have been performed by Belle [159]. Searches for
five charged tracks in kaon decays have been performed
for the first time with K

+
→ ω+2(e+e

↓) by NA62 [160]
and with KL → ω02(e+e

↓) by KOTO [161]. All afore-
mentioned channels set limits on ϑ2

hh↑
, as opposed to limits

on (ϖgD)2 from dark higgsstrahlung at e
+
e
↓ colliders dis-

cussed above.

• Searches at beam dumps: the decay in flight of the dark
photon is typically fast, but can lead to the production of
metastable, semi-visible dark states (i.e., the products of
their decays contain missing energy and visible particles).
The couplings controlling production and the lifetime of
the metastable dark partners are in general different. Be-
cause decays are generally faster in these models, beam
dumps with a small baseline and large acceptance like
SHiP could set strong bounds in the future. Much of the
literature in this case has focused on inelastic DM models.
For a non-exhaustive list of beam dump constraints and
sensitivity studies, see, e.g., [162–169].

• Fixed targets: the presence of displaced vertices and the

semi-visible decays of the dark photon can interfere with
the search for missing energy at fixed target experiments
like NA64 [170] and LDMX [171]. In this case, new
strategies dedicated to finding the displaced activity can
improve the sensitivity to RDS. For example, NA64 has
constrained semi-visible dark photons with both a dedi-
cated displaced vertex search [172] and with a rescast of
the invisible dark photons searches [94].

4.3. Dark Scalars and phase transitions in the Early Universe

Unlike in the SM, the interaction between the scalar and
gauge sectors in RDS scenarios can introduce richer dynam-
ics in the Early Universe. In fact, when the gauge symmetry
in the DS is spontaneously broken, it can lead to a FOPT. A
sufficiently supercooled FOPT generates a strong GW signal
that PTA observatories can probe. A DS FOPT is one of the
most compelling new physics explanations for the NANOGrav
Stochastic GW Background (SGWB) observation [173–179].
A signal in the nanohertz frequencies points toward a (sub-
)GeV DS vev [61, 173, 179–181].

An example [173] is given by a low-scale DS composed of a
complex scalar ϱ charged under a dark U(1)D gauge symmetry,
and the associated dark gauge boson Z

↑
µ

L =
(
Dµϱ
)↔

(Dµϱ) ↓
1
4

Z
↑

µςZ
↑µς
↓ V(ϱ↔ϱ), (3)

with V = ↓µ2
ϱϱ
↔ϱ + φϱ (ϱ↔ϱ)2. Assuming µ2

ϱ > 0, the dark
scalar breaks the symmetry by acquiring a vev vϱ = µϱ/

√
φϱ,

resulting in the mass spectrum m
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ϱ and m
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ϱ.
While the frequency of the GW background observed by

NANOGrav sets the scale of new physics vϱ to be around the
(sub-)GeV scale, the fact that its duration is long, i.e. it is su-
percooled, calls for a very particular shape in the potential, re-
sulting in a nearly conformal scalar sector. This is realised if
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searches [145–149]. Higgs decays can also produce meta-
stable semi-visible fermions in the RDSM, which can be
searched for at the lifetime frontier of the LHC [150].

• Meson decays: light dark photons are effectively con-
strained by searches for visible resonances in ω0

→ εZ↑

decays [151]. Through a cascade of decays, dark photons
can also be produced in meson meson decays such as K →

h
↑
→ Z

↑
Z
↑ and K → ω(h↑ → Z

↑
Z
↑) or B → h

↑
→ Z

↑
Z
↑

and B → K(h↑ → Z
↑
Z
↑) via the mixing between the higgs

and the dark higgs [152–154]. The KL → 2(e+e
↓) de-

cays have been measured by KTEV [155] and NA48 [156]
(searches for KL → XX → 4ε have also been performed
by KOTO recently [157]), but no such measurement exists
for KS . A constraint on KS → 2(µ+µ↓) was recently im-
posed by LHCb [158] and searches for B decays to four
leptons have been performed by Belle [159]. Searches for
five charged tracks in kaon decays have been performed
for the first time with K

+
→ ω+2(e+e

↓) by NA62 [160]
and with KL → ω02(e+e

↓) by KOTO [161]. All afore-
mentioned channels set limits on ϑ2

hh↑
, as opposed to limits

on (ϖgD)2 from dark higgsstrahlung at e
+
e
↓ colliders dis-

cussed above.

• Searches at beam dumps: the decay in flight of the dark
photon is typically fast, but can lead to the production of
metastable, semi-visible dark states (i.e., the products of
their decays contain missing energy and visible particles).
The couplings controlling production and the lifetime of
the metastable dark partners are in general different. Be-
cause decays are generally faster in these models, beam
dumps with a small baseline and large acceptance like
SHiP could set strong bounds in the future. Much of the
literature in this case has focused on inelastic DM models.
For a non-exhaustive list of beam dump constraints and
sensitivity studies, see, e.g., [162–169].

• Fixed targets: the presence of displaced vertices and the

semi-visible decays of the dark photon can interfere with
the search for missing energy at fixed target experiments
like NA64 [170] and LDMX [171]. In this case, new
strategies dedicated to finding the displaced activity can
improve the sensitivity to RDS. For example, NA64 has
constrained semi-visible dark photons with both a dedi-
cated displaced vertex search [172] and with a rescast of
the invisible dark photons searches [94].

4.3. Dark Scalars and phase transitions in the Early Universe

Unlike in the SM, the interaction between the scalar and
gauge sectors in RDS scenarios can introduce richer dynam-
ics in the Early Universe. In fact, when the gauge symmetry
in the DS is spontaneously broken, it can lead to a FOPT. A
sufficiently supercooled FOPT generates a strong GW signal
that PTA observatories can probe. A DS FOPT is one of the
most compelling new physics explanations for the NANOGrav
Stochastic GW Background (SGWB) observation [173–179].
A signal in the nanohertz frequencies points toward a (sub-
)GeV DS vev [61, 173, 179–181].

An example [173] is given by a low-scale DS composed of a
complex scalar ϱ charged under a dark U(1)D gauge symmetry,
and the associated dark gauge boson Z

↑
µ

L =
(
Dµϱ
)↔

(Dµϱ) ↓
1
4

Z
↑

µςZ
↑µς
↓ V(ϱ↔ϱ), (3)

with V = ↓µ2
ϱϱ
↔ϱ + φϱ (ϱ↔ϱ)2. Assuming µ2

ϱ > 0, the dark
scalar breaks the symmetry by acquiring a vev vϱ = µϱ/

√
φϱ,

resulting in the mass spectrum m
2
Z↑
= g

2
D

v
2
ϱ and m

2
ϱ = 2φϱv2

ϱ.
While the frequency of the GW background observed by

NANOGrav sets the scale of new physics vϱ to be around the
(sub-)GeV scale, the fact that its duration is long, i.e. it is su-
percooled, calls for a very particular shape in the potential, re-
sulting in a nearly conformal scalar sector. This is realised if
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searches [145–149]. Higgs decays can also produce meta-
stable semi-visible fermions in the RDSM, which can be
searched for at the lifetime frontier of the LHC [150].

• Meson decays: light dark photons are effectively con-
strained by searches for visible resonances in ω0

→ εZ↑

decays [151]. Through a cascade of decays, dark photons
can also be produced in meson meson decays such as K →

h
↑
→ Z

↑
Z
↑ and K → ω(h↑ → Z

↑
Z
↑) or B → h

↑
→ Z

↑
Z
↑

and B → K(h↑ → Z
↑
Z
↑) via the mixing between the higgs

and the dark higgs [152–154]. The KL → 2(e+e
↓) de-

cays have been measured by KTEV [155] and NA48 [156]
(searches for KL → XX → 4ε have also been performed
by KOTO recently [157]), but no such measurement exists
for KS . A constraint on KS → 2(µ+µ↓) was recently im-
posed by LHCb [158] and searches for B decays to four
leptons have been performed by Belle [159]. Searches for
five charged tracks in kaon decays have been performed
for the first time with K

+
→ ω+2(e+e

↓) by NA62 [160]
and with KL → ω02(e+e

↓) by KOTO [161]. All afore-
mentioned channels set limits on ϑ2

hh↑
, as opposed to limits

on (ϖgD)2 from dark higgsstrahlung at e
+
e
↓ colliders dis-

cussed above.

• Searches at beam dumps: the decay in flight of the dark
photon is typically fast, but can lead to the production of
metastable, semi-visible dark states (i.e., the products of
their decays contain missing energy and visible particles).
The couplings controlling production and the lifetime of
the metastable dark partners are in general different. Be-
cause decays are generally faster in these models, beam
dumps with a small baseline and large acceptance like
SHiP could set strong bounds in the future. Much of the
literature in this case has focused on inelastic DM models.
For a non-exhaustive list of beam dump constraints and
sensitivity studies, see, e.g., [162–169].

• Fixed targets: the presence of displaced vertices and the

semi-visible decays of the dark photon can interfere with
the search for missing energy at fixed target experiments
like NA64 [170] and LDMX [171]. In this case, new
strategies dedicated to finding the displaced activity can
improve the sensitivity to RDS. For example, NA64 has
constrained semi-visible dark photons with both a dedi-
cated displaced vertex search [172] and with a rescast of
the invisible dark photons searches [94].

4.3. Dark Scalars and phase transitions in the Early Universe

Unlike in the SM, the interaction between the scalar and
gauge sectors in RDS scenarios can introduce richer dynam-
ics in the Early Universe. In fact, when the gauge symmetry
in the DS is spontaneously broken, it can lead to a FOPT. A
sufficiently supercooled FOPT generates a strong GW signal
that PTA observatories can probe. A DS FOPT is one of the
most compelling new physics explanations for the NANOGrav
Stochastic GW Background (SGWB) observation [173–179].
A signal in the nanohertz frequencies points toward a (sub-
)GeV DS vev [61, 173, 179–181].

An example [173] is given by a low-scale DS composed of a
complex scalar ϱ charged under a dark U(1)D gauge symmetry,
and the associated dark gauge boson Z

↑
µ

L =
(
Dµϱ
)↔

(Dµϱ) ↓
1
4

Z
↑

µςZ
↑µς
↓ V(ϱ↔ϱ), (3)

with V = ↓µ2
ϱϱ
↔ϱ + φϱ (ϱ↔ϱ)2. Assuming µ2

ϱ > 0, the dark
scalar breaks the symmetry by acquiring a vev vϱ = µϱ/

√
φϱ,

resulting in the mass spectrum m
2
Z↑
= g
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ϱ and m
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ϱ.
While the frequency of the GW background observed by

NANOGrav sets the scale of new physics vϱ to be around the
(sub-)GeV scale, the fact that its duration is long, i.e. it is su-
percooled, calls for a very particular shape in the potential, re-
sulting in a nearly conformal scalar sector. This is realised if
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Dark particles conformal mass ratio
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A purely conformal Coleman-Weinberg model 
(scalar QED) features a specific mass ratio

See B. Sojka and B. Swiezewska, arXiv:2407.07437 [hep-ph] for detailed discussion on radiative vs explicit mass terms

M2
S

M2
V

=
3g2

8π2

We do not assume a conformal model (μ ≠ 0 in the starting Lagrangian), but 
we derive a relation for the couplings that give a conformal-like potential
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Figure 6: Left: the SGWB generated by a FOPT in the model in Eq. (3) for selected benchmark points. Right: the maximum (minimum) value gmax (gmin) of the
gauge coupling gD for which a FOPT completes in the runaway regime, as a function of the scalar quartic coupling ωε. The dashed line corresponds to the relation
in Eq. (4). Further details can be found in [173].

the gauge coupling lies close to the line

gD =

{
16ϑ2ωε

3

[
1 →
ωε
8ϑ2
(
5 + 2 log 2

)
]}1/4

. (4)

The relation above has the strong phenomenological implica-
tion of a specific relation of masses, m

2
ε/m

2
Z↑
↓
√

3ωε/2ϑ, that
can be targeted and tested in experimental searches. We show in
Fig. 6-left the SGWB generated by selected benchmark points,
see Ref. [173], in the model in Eq. (3) compared to the peri-
odogram inferred by the NANOGrav collaboration, while on
Fig. 6-right we highlight the region of parameter space where
phenomenologically viable FOPT are possible, compared to the
line in Eq. (4). Further details are available in [173].

Once the PT is completed, the DS energy density needs to be
transferred to the visible sector before the onset of big bang nu-
cleosynthesis. In fact, it has been shown that stable DSs are in
tension with NANOGrav data [61]. In RDS, the energy trans-
fer is achievable via the Higgs or the neutrino portals, which
allow the scalar to decay sufficiently fast into the SM. This re-
quirement sets a lower bound on the strength of the coupling
constants and can suggest the correct DS parameter space re-
gion to probe in terrestrial experiments.

5. Strategies for bounds on dark particles, beyond LLPs

Current bounds (e.g. see [1, 2]) on dark particles rely on the
assumption of minimality. As discussed above, these bounds
are model-dependent as they may not apply if these particles
decay via semivisible channels and/or fast. Abandoning mini-
mality opens a vast landscape of models, and it is essential that
experimental bounds can be applied to multiple models or can
be easily recasted. We would like to present some suggestions
to facilitate such effort.

• It is useful to focus on the physical properties of the
dark particles, namely masses, decay length and scatter-

ing cross sections. In this way, bounds constrain measur-
able quantities, that can be used to test many models and
in other experiments.3

• Searches should be done as inclusively as possible to cap-
ture a broad range of possible signatures that can arise in
multiple models. In addition to this type of searches, the
experimental collaborations could also carry out dedicated
analysis for specific benchmark models, to obtain more
stringent bounds, although model-dependent.

• Dark particle production and decay should be decoupled as
they may be induced by different interactions. Constraints
on portal couplings, should account for different assump-
tions on the particle lifetime and/or production cross sec-
tion.

• The assumptions on the models should be clearly stated
so that the bounds could be easily recasted. To this aim,
the expression for the dominant decay rates, production
cross sections with their energy and angular dependences,
should be given for each bound.

• If the events depend on multiple interactions, several
benchmark points should be chosen, so that they capture
the key behaviours of the events: for instance, heavy and
light mediators, two-body versus three-body decays, com-
pressed fermionic spectra versus large mass hierarchies.

• As rich dark sectors have signatures in multiple type of
experiments, various searches need to be combined, to-
gether with information from astroparticle physics and
cosmology, to constrain the models and to identify the
most promising benchmark points. This allows to achieve
a physics reach vastly superior to that of any individual
experiments.

3Similar points have been made for searches for long-lived particles [182].
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Models accounting for PTA data generally predict 
a strongly correlated mass spectrum
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MCMC study of the model with ELENA
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Parameter MAP Bayes MLE
log10 ωω -2.35 →2.49 ± 0.28 -2.82
log10 gD -0.16 →0.19 ± 0.07 -0.28

log10 v0

ω / MeV 1.64 2.06 ± 0.57 1.67

Table 3: Maximum a posterior (MAP), Bayes and maximum likelihood (MLE) estimators for the
Lagrangian parameters in Equation (10) from the NANOGrav 15-year dataset, obtained from the
MCMC sampling performed with PTArcade, as described in the main text.

We use PTArcade to collect more than 9 millions samples9 (9,360,965) on the model in Equation (10):
this is done by creating a script that contains the code developed in Section 3 and using the final
instance of the class GW_SuperCooled as input for the spectrum function required by PTArcade. For the
parameter points where the variable is_physical results to False we assume no production of SGWB
(i.e. h2!GW = 0 for all frequencies). In Ref. [31] it was shown that, in order to produce a strong FOPT,
the full scalar potential generated from the Lagrangian in Equation (10) must have a conformal-like
shape, which is realised if the gD coupling lies close to the line defined by

groll

D =
{

16ε2ωω

3

[
1 →

ωω

8ε2
(5 + 2 log 2)

]}
1/4

. (44)

To speed-up the convergence of the algorithm, instead of sampling with a uniform prior over the plane
(log10 ωω, log10 gD), we assume a uniform probability distribution over the line groll

D , and a gaussian dis-
tribution (centred at groll

D ) over the perpendicular direction. This allows to reduce the burn-in phase,
by aligning the sampling directions with the high-likelihood region. In terms of the Lagrangian param-
eters, the sampling covered the range of values: log10 ωω ↑ (→3.17, →0.52), log10 gD ↑ (→0.67, 0.62),
log10 v0

ω/MeV ↑ (1.0, 3.4) (with a uniform prior distribution for the latter). The results of the analysis,
rotated in the physical parameters, are reported in Figure 19, where it is evident that the data strongly
prefer a conformal-like potential (i.e. having ωω and gD lying around groll

D ) with a new-physics scale
below 100 MeV. The maximum a posterior (MAP), Bayes and maximum likelihood (MLE) estimators
for the three parameters are identified by a yellow star, a purple rhombus and a red cross, respectively.
The MAP, MLE and Bayes estimators for the Lagrangian parameters are reported in Table 3.
To give a more complete idea of the sampled parameter space, we report in a scatter plot all the
sampling points generated during the MCMC in Figure 20, with each point coloured according to the
log-likelihood value computed by PTArcade. This shows that the employed parametrisation e!ciently
sampled the phenomenologically relevant region, focusing on the regions with high likelihood but also
covering the surrounding areas with lower likelihood values.
We plot the predicted SGWB spectra for the MAP, MLE and Bayes estimator parameters, together
with the NANOGrav 15-years periodogram in Figure 21; for completeness we also include the SGWB
spectrum from the “Slow” benchmark point in Table 2. A summary of all the discussed points and
their thermal parameters as computed by ELENA is reported in Table 4.

9
The final sample results from the union of 1340 individual chains.

37

We interfaced ELENA with PTArcade to perform 
a MCMC fit to NANOGrav 15-years data

A. Mitridate, D. Wright, R. von Eckardstein, T. Schröder, J. Nay, K. Olum, K. Schmitz and T. Trickle, arXiv:2306.16377 [hep-ph]

We collected more 
than 9 millions 

samples 
(9,360,965)
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Quantity MAP Bayes MLE Slow Fast
ωω 4.49 → 10→3 3.21 → 10→3 1.51 → 10→3 6 → 10→3 1.65 → 10→3

gD 0.70 0.64 0.53 0.75 0.54
v0

ω (MeV) 44.10 1.14 → 102 46.72 5 → 102 5 → 102

mω (MeV) 4.18 9.14 2.56 54.77 28.72
mZ→ (MeV) 30.75 73.16 24.79 3.75 → 102 2.7 → 102

Tcritical (MeV) 9.50 22.65 7.69 1.16 → 102 84.82
Tnucleation (MeV) 0.91 0.90 0.12 13.94 15.27
Tpercolation (MeV) 0.74 0.68 0.11 9.61 14.87
Tcompletion (MeV) 0.68 0.64 0.10 6.39 14.81
Tminimal (MeV) 0.00 0.00 4.13 → 10→2 0.00 11.55
Treheating (MeV) 4.46 10.58 4.03 53.84 39.86

P min

f 0.00 2.05 → 10→300 0.00 6.57 → 10→17 0.00
ε 1.31 → 103 5.71 → 104 1.98 → 106 9.86 → 102 50.59

ε↑ 39.79 2.62 → 102 1.64 → 103 34.45 7.62
εeq 11.07 23.94 47.81 11.79 2.92
ϑ↓ 4.26 → 1018 1.19 → 1018 6.68 → 1017 1.69 → 1018 2.29 → 1016

ϑeq 1.15 → 102 2.38 → 103 4.14 → 104 80.67 14.72
Rsep↓H↓ 0.14 0.23 0.13 0.53 7.13 → 10→3

Table 4: Numerical values of the model and FOPT thermal parameters for the specific realisations
of the minimal dark sector in Equation (10): maximum a posterior (MAP), Bayes and maximum
likelihood (MLE) estimators from the MCMC sampling discussed in the main text, plus the “Slow”
and “Fast” benchmark points introduced in Table 2.

setting too large values for precision, since di!erent potential shapes may require multiple iterations
to converge. On general grounds, we find that the default settings of step_phi = 1e-3 and precision =

1e-3 should provide a valid configuration for most of the users, with a computing time of order 10→2

seconds and a result that does not di!er more than O(10→3) from the most extreme settings.

6 Conclusion

We introduced ELENA: EvaLuator of tunnElliNg Actions, a Python package designed to study first-
order phase transitions generated by scalar potentials in the Early Universe. The core of the package
is a vectorised implementation of the tunnelling potential formalism, which is an alternative method
to compute the tunnelling action with respect to the widely adopted bounce equation formalism.

Point MAP Bayes MLE Slow Fast
Software E C E C E C E C E C

Tcrit (MeV) 9.50 9.51 22.65 / 7.69 7.69 115.75 115.78 84.82 84.83
Tmin (MeV) 0 0 0 / 0.04 0 0 0 11.55 11.48

time (s) 0.13 0.14 0.13 0.14 0.39 0.13 0.12 0.13 0.38 0.17

Table 5: Comparison between the values of the critical (Tcrit) and minimal (Tmin) temperatures as
computed by ELENA (E) and CosmoTransitions (C) for the di!erent benchmark points, as well as of
the time taken to identify them. For the Bayes estimator, CosmoTransitions does not identify a second
phase; the thermal potential for this point at the critical temperatures identified by ELENA is plotted
in Figure 22.
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Conclusion

18

The computation of the nucleation rate in FOPT can be numerically 
demanding, due to the nature of the bounce equation solutions

We released ELENA, a Python package based 
on the more efficient tunnelling formalism

ELENA goes beyond common assumptions 
usually employed in computing SWGB from FOPT

ELENA provides a full pipeline of computation, 
from Lagrangian parameters to SGWB spectra

We introduced a minimal dark sector model, and interfaced ELENA 
with PTArcade to perform a MCMC study on NANOGrav data

We carefully checked that the model can explain the signal, while complying with 
several consistency criteria (completion of FOPT, physical true volume evolution, etc.)
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Log-Likelihood scatter plot
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Precision-velocity trade-off in ELENA

22

10°5 10°4 10°3 10°2

step phi

10°6

10°5

10°4

10°3

10°2

10°1

R
el

at
iv

e
E
rr

or
(left axis)

Error
(right axis)

Time

precision=1e-01

precision=1e-02

precision=1e-03

precision=1e-04

precision=1e-05

precision=1e-06

10°2

10°1

100

T
im

e
(s

)

Slow transition - T = 57.875 MeV



Michele Lucente - Università di Bologna TeVPA 2025
23

Pulsar Timing Arrays
A set of galactic millisecond pulsars, monitored to search 

for correlations in the pulse time-of-arrival at Earth

Kai Schmitz, Sydney CPPC Seminar 29/08/2024Tonia Klein / NANOGrav

A monochromatic gravitational wave modifies the pulse period with red/blue shift

Z =
1
2

̂pi ̂pj

1 + Ω̂ ⋅ ̂p [hij (tobs, xearth) − hij (tem, xpulsar)]
The observable is the timing 

residual for each pulsar Ra (t) = ∫
t

0
dt′￼ Z (t′￼)
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International Pulsar Timing Array project
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Figure by Thankful Cromartie
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Evidence of a time delay

25

PTA collaborations observe excess time delay in pulsar timing
NANOGrav, arXiv:2306.16213 [astro-ph.HE] EPTA and InPTA, arXiv:2306.16214 [astro-ph.HE]

PPTA, arXiv:2306.16215 [astro-ph.HE] CPTA, arXiv:2306.16216 [astro-ph.HE]
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Hellings-Downs curve

26

The residual timing of a single pulsar is not informative of its origin 

If caused by a stochastic GW background, the 
residuals have a specific correlation among pulsars

R. W. Hellings and G. S. Downs, Astrophys. J. Lett. 265 (1983), L39-L42

Chapter 3. Pulsar Timing 49 of 155

Comparing Eq. 3.22 with Eq. 2.37, we see that our goal is to calculate the un-normalized
ORF, �̃ij(f), for PTAs, which under our approximation for Ÿij(f, �̂), is frequency independent.
While elementary, any which way you do this integral is going to be tedious. I recommend
following the detailed derivations cited in the initial paragraph above. The result is

�̃ij =
⁄

S2

d
2�n̂

4fi

ÿ

A=+,◊

F
A
i (n̂)F A

j (n̂)

= xij ln(xij) ≠ 1
6xij + 1

3 , (3.23)

where xij = (1 ≠ cos(◊ij))/2, and ◊ij is the angular separation between the position of pulsars
on the sky. This was the initial calculation and normalization presented by Hellings & Downs
[41] (although it was initially presented in that paper without derivation steps). In the PTA
literature, you’ll more often see the general expression that accounts for i = j, and normalizes
the ORF such that �ij = 1 for i = j. This expression is

�ij = 3
2xij ln(xij) ≠ 1

4xij + 1
2 + 1

2”ij, (3.24)

where ”ij is the Kronecker delta function. This function is shown in Fig. 3.3 along with some
notable features. We get maximal values in the pulsar autocorrelations. Even pulsars with very
small angular separations will have a cross-correlation no greater than 0.5, since the pulsar
terms decorrelate rapidly once they are spatially separated by approximately more than a GW
wavelength. The Hellings & Downs curve exhibits a strong quadrupolar trend over angular
separation as a result of the quadrupolar GW antenna response patterns of the Earth-pulsar
systems. However it is not a pure quadrupole; the fact that the curve only returns to 0.25
at 180¶ instead of 0.5 is evidence of that. This is because the denominator in the antenna
response pattern (see Eq. 3.17) introduces a preferred direction, where the response is largest
to GWs propagating parallel to the radio pulses travelling from the pulsar to Earth. In fact, we
can perform a decomposition of the Hellings & Downs curve in terms of Legendre polynomials
to inspect the power in di�erent multipoles. The result is [38, 42, 43]

�ij =
Œÿ

l=0
alPl(cos ◊ij), (3.25)

where i ”= j, a0 = 0 = a1, and
al = 3

2
(l ≠ 2)!
(l + 2)!(2l + 1). (3.26)

Implicit in this decomposition is that the distribution of pulsars is isotropic across the sky,
giving a distribution of pulsar angular separations that is Ã sin ◊ij. The Legendre spectrum for
the Hellings & Downs curve is shown in Fig. 3.4, with all power contained in l Ø 2, meaning
that the Hellings & Downs curve is orthogonal to monopole and dipole inter-pulsar correlations

The Nanohertz Gravitational Wave Astronomer S. R. Taylor

xij =
1
2 (1 − cos θij)

S. R. Taylor, arXiv:2105.13270 [astro-ph.HE]



Michele Lucente - Università di Bologna TeVPA 2025

GW from FOPT

27

The spectral shape of the SGWB is characteristic of the production mechanism
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2. α*, the strength of the transition, i.e., the ratio of the
change in the trace of the energy–momentum tensor
across the transition and the radiation energy density at
percolation (Ellis et al. 2019b; Caprini et al. 2020).

3. * * * *H R R H 1= - , the average bubble separation in units
of the Hubble radius at percolation, *H 1- . For relativistic
bubble velocities, which is what we consider in the
following, R* is related to the bubble nucleation rate, β,
by the relation H*R* = (8π)1/3H*/β.

In addition to the parameters T*, α*, and H*R*, the GWB
produced by a phase transition also depends on the velocity of
the expanding bubble walls, vw. However, deriving the precise
value of this quantity is an open theoretical problem, which
depends on model-dependent quantities, such as the strength of
the interactions between the bubble walls and the SM plasma.
Therefore, in our analysis, we fix the bubble velocity to unity
(i.e., the speed of light in natural units). This assumption is well
justified for strong phase transitions (Bodeker & Moore 2017),
which, realistically, are the only ones that could lead to a
detectable signal in our current data. In particular, we fix vw
= 1 for both phase transition scenarios that we are interested in,
PT-SOUND and PT-BUBBLE. In the latter case, vw→ 1 is
automatically implied by the runaway behavior of the phase
transition; in the former case, one actually expects a subluminal
terminal velocity, vw< 1. In this sense, our decision to fix vw
= 1 amounts to the optimistic assumption that this terminal
velocity is numerically close to vw = 1. A similar approach is
followed by the authors of the LISA review paper (Caprini
et al. 2020), who work with vw = 0.95 throughout most of their
analysis in the absence of more detailed microphysical
calculations. Finally, we point out that the parameterization
of the GWB signal in terms of H*R* = (8π)1/3 vw H*/β
already absorbs a large part of the dependence on the bubble
wall velocity. The remaining vw dependence is mostly
contained in the efficiency factor κs (see below). However, in
the regime of large α* values, α*∼ 0.3L 10, which turn out

to be preferred by the NG15 data (see Figure 8), this
dependence is rather weak (see Figure 13 in Espinosa et al.
2010), which justifies again keeping vw fixed.
The GWB spectrum sourced by bubbles and sound waves

can be written in terms of these parameters as
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Here 0.0049bW̃ = (Jinno & Takimoto 2017) and 0.036sW̃ =
(Hindmarsh et al. 2017), the efficiency factor
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gives the fraction of the released energy that is transferred to
plasma motion in the form of sound waves, and  accounts for
the redshift of the GW energy density,
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We recall that T0 and H0 denote the photon temperature and
Hubble rate today. The degrees of freedom g* and g*,s in
Equation (35) are evaluated at T= T*, and *

g s,
eq is the number of

degrees of freedom contributing to the radiation entropy at the
time of matter–radiation equality. The production of GWs from
sound waves stops after a period τsw, when the plasma motion
turns turbulent (Ellis et al. 2019a, 2019b, 2020; Guo et al.
2021). In Equation (34), this effect is taken into account by the
suppression factor

*H1 1 2 , 36sw sw
1 2( ) ( ) ( )t t¡ = - + -

Figure 8. Same as in Figure 5, but for the PT-BUBBLE (left panel) and PT-SOUND model (right panel). Figure 25 in Appendix C.3 shows the same plots but with the
parameter a fixed by causality, a = 3. Figures 26 and 27 in Appendix C.3 show extended versions of the two plots that include the spectral shape parameters a, b, c
and the SMBHB parameters ABHB and γBHB.
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bubble velocities, which is what we consider in the
following, R* is related to the bubble nucleation rate, β,
by the relation H*R* = (8π)1/3H*/β.
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depends on model-dependent quantities, such as the strength of
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where the shock formation timescale, τsw, can be written in
terms of the phase transition parameters as *R Ufsw ¯t » , with

* *U 3 4 1f s
2¯ [ ( )]k a a» + (Weir 2018).
The functions b s, describe the spectral shape of the GWB

and are expected to peak at the frequencies


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where the values of the peak frequencies at the time of GW
emission are given by * *f R0.58b = (Jinno & Takimoto 2017)
and * *f R1.58s = (Hindmarsh et al. 2017). In passing, we
mention that the numerical factors in these estimates may still
change in the future, as our understanding of cosmological
phase transitions improves. However, at the level of our
Bayesian fit analysis, changes in these prefactors can be
absorbed in the temperature scale T*, which in its role as an
independent fit parameter only controls the peak frequencies in
Equation (37). A similar argument applies to the numerical
factors in Equations (33) and (34): changes in these prefactors
can always be absorbed in a rescaled version of the fit
parameter α*, which only appears in the expressions for the
peak amplitudes of the GWB signal.

The shape of the spectral functions can be usually
approximated with a broken power law of the form

x
a b

bx ax
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. 38
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Here a and b are two real and positive numbers that give the
slope of the spectrum at low and high frequencies, respectively;
c parameterizes the width of the peak. The normalization
constant,  , ensures that the logarithmic integral of  is
normalized to unity and is given by
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where n= (a+ b)/c and Γ denotes the gamma function.
While the values of the coefficients a, b, and c can in principle
be estimated from numerical simulations, we allow them to
float within the prior ranges given in Table 3. These prior
ranges were chosen to roughly reflect the typical uncertainties
of numerical simulations and any possible model dependency
of these coefficients (see, e.g., Hindmarsh et al. 2017, 2021;
Cutting et al. 2018, 2021; Lewicki & Vaskonen 2020,
2021).84

5.3.2. Results and Discussion

The reconstructed posterior distributions for the parameters
α*, T*, and H*R* of the PT-SOUND and PT-BUBBLE models
are reported in Figure 8, both for the case where the phase
transition is assumed to be the only source of GWs (blue
contours) and for the scenario where we consider the

superposition of the phase transition and SMBHB signals
(red contours).85 Corner plots including the posterior distribu-
tions for the spectral shape parameters a, b, c and SMBHB
parameters ABHB and γBHB are reported in Figures 26 and 27 in
Appendix C.3.
In all analyses, the data prefer a relatively strong and slow

phase transition. Specifically, for PT-BUBBLE, we find α* > 1.1
(0.29) and H*R* > 0.28 (0.14) at the 68% (95%) credible level.
When the SMBHB signal is added on top of the GWB
predicted by PT-BUBBLE, we find α* > 1.0 (0.23) and
H*R* > 0.26 (0.11) at the 68% (95%) credible level. For the
PT-SOUND model, we find α* > 0.42 (0.37) and
H*R* ä [0.053, 0.27] ([0.046, 0.89]) at the 68% (95%) credible
level. Including the SMBHB signal on top of the one predicted
by PT-SOUND, we find α*ä [0.46, 5.4] (>0.16) and
H*R* ä [0.054, 0.35] (>0.0015) at the 68% (95%) credible
level.
As can be seen in Figure 3, for both phase transition models,

the reconstructed GWB spectrum tends to peak around the
higher frequency bins and fit the signal in the lower frequency
bins with the left tail of the spectrum. Specifically, for the PT-
BUBBLE model we find T*ä [0.047, 0.41] ([0.023, 1.75]) GeV
at the 68% (95%) credible level, whereas for the PT-SOUND
model we get T*ä [4.7, 33] ([2.7, 93]) MeV at the 68% (95%)
credible level. The shift between these T* intervals is partially
explained by the different numerical factors in the frequencies
*fs and *fb (see Equation (37)). As explained below

Equation (37), any change in these numerical factors can be
reabsorbed in a redefinition of the fit parameter T*.
The inclusion of the SMBHB signal, by adding power to the

lowest frequency bins, allows the T* posterior for the PT-
SOUND model to extend to higher values. In this case, we find
that T* ä [4.9, 50] ([0.8, 2× 106]) MeV at the 68% (95%)
credible level. Here the increase in the 68% upper limit is
reflected in the slight shift between the red and blue dashed
vertical lines in the 1D marginalized posterior distribution for
T* in the right panel of Figure 8. The drastic increase in the
95% upper limit, on the other hand, is related to the fact that
adding the SMBHB signal to the GWB results in a flat plateau
region in the posterior distribution of the PT-SOUND model
parameters where the NANOGrav signal is mostly explained
by the SMBHB contribution to the GWB. The 95% credible
regions for the PT-SOUND+SMBHB model cover much of this
plateau, which explains their large extent and noisy appearance
in Figure 8. For the PT-BUBBLE model, the inclusion of the
SMBHB signal is less significant, and we find T* ä [0.046,
0.46] ([0.017, 3.27]) GeV at the 68% (95%) credible level.
The larger phase transition temperatures observed for the PT-

BUBBLE model are a consequence of the smaller value of the
peak frequency at the time of emission, *fb , but also of the
lower prior range for the low-frequency spectral index adopted
for the PT-BUBBLE model. Indeed, a shallower low-frequency
tail allows spectra with a higher peak frequency to still produce
a sizable signal in the lowest frequency bins. In Appendix C.3,
we report the results of the analysis in which the low-frequency
slope is set to the value predicted by causality (a= 3). In this
case, as expected, the reconstructed phase transition

84 Causality fixes the spectral index of the phase transition GWB signal to
a = 3 in the low-frequency limit. However, given the simple power-law
parameterization adopted in this work, double-peak features observed in the
results of numerical simulations (Hindmarsh et al. 2017; Hindmarsh &
Hijazi 2019) can appear as a deviation from this behavior near the peak
frequency. Nonetheless, in Appendix C.3, we also report the results of an
analysis in which the low-frequency slope is fixed to a = 3.

85 The noise in the 95% credible regions of the posterior distributions of the
PT-SOUND+SMBHB model is due to the presence of an extended plateau region
in the posterior distribution, which renders the kernel density reconstruction
sensitive to Poisson fluctuations in the binned MCMC data.
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fpeak [Hz] ≈ 10−8 ( T*

100 MeV )
The spectral shape of the SGWB signal observed by PTAs is peaked around 10 nHz

For a FOPT we expect

New physics scale lives at the sub-Gev scale

λ = 6 × 10−3

g = 0.74986
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The potential shape
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The amplitude of the signal requires a slow transition, 
typically realised in conformal-like potentials
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A barrier is present until low temperatures to delay 
the bubble nucleation from falso to true vacuum



Michele Lucente - Università di Bologna TeVPA 2025

Sound waves, stable dark sector,
ignoring cosmological constraints

¢NeÆ > 0.22: excluded by
BBN and CMB at 95 % C.L.

Ø/H < 3: No percolation

Ø/H < 10: GWB is overestimated
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Portals with the Standard Model
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T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg and C. Tasillo, arXiv:2306.09411 [astro-ph.CO]

The dark sector must have portals to decay into SM states

A fully secluded and stable dark sector to account 
for PTA data is in tension with cosmology
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Consider the most general gauge-invariant scalar potential

Full models to explain NANOGrav data
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We show some theoretically motivated models that can account for the NANOGrav obervations...

I. INTRODUCTION

II. THE MODELS

A. Scenario A: mω > 2mµ

In this case it is su!cient to allow for Higgs-phi mixing. Interestingly, the same mixing arises from a
(
H

†
H
)
ω
†
ω

coupling that can induce the negative µ
2
term responsible for the ω vev.

TO DO:

1. ...

DONE:

1. Compute decay rate ω→ > µ
+
µ
↑. It goes as ” = 1/(4ε) sin

2
ϑ h

2
µ
mω.

The rate is:

” =
m

2
µ
sin

2
ϑ
(
m

2
ε
→ 4m

2
µ

)3/2

8εm2
ε
v2

. (1)

The BBN allowed regions are reported in Fig. 1.

2. Check the consistency of the picture (negative ϖHω).

See Eq. 8 and discussion around.

3. Identify relevant parameter space (sin ϑ vs mω) putting a lower bound for sin ϑ so that ” > (1 sec)↑1 and a line
corresponding to the value for which SSB is induce by the ϖHω term.

See Figure 2.

The most general gauge-invariant scalar potential that we can have is

VUV = →µ
2
H
H

†
H + ϖH

(
H

†
H
)2

+ (→µ
2
ω
ω
→
ω) + ϖω (ω

→
ω)

2
+ ϖHω

(
H

†
H
)
(ω

→
ω) (2)

Let us consider the case where the negative mass term µω is provided by the portal coupling between the dark

scalar and Higgs, thus further connecting the two sectors and preventing the introduction of a new energy scale. This

can be achieved if the portal coupling is negative and it means µ̃
2
ω
↑ →ϖHωv

2
H
/2 and with the definition of the vev

↓ω↔ = w/
↗
2 we have the relations µ̃

2
ω
= ϖωw

2
and m

2
ω
= 2ϖωw

2
. We can immediately see that dark scalar vevs around
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FIG. 1. Allowed BBN region for mω > 2mµ.

the 100s MeV implies ωHω → 10
→5

ωω. We will see that from the phase transition analysis the quartic coupling needs

to be ωω ↑ 10
→2

↓ 10
→3

, therefore ωHω ↑ 10
→7

↓ 10
→8

. This leads to a very suppressed mixing of the two scalars.

The mixing angle is given by

tan 2ε =
ωωHvhvε

↓ωεv
2
ε
+ ωHv

2
h

(3)

that for a large hierarchy of the vevs can be approximated to be

tan 2ε → 2ε → 2 sin ε →
ωHω

ωH

w

v
(4)

and the field in the mass eigenstate are

hphys = cos εh+ sin εϑ (5)

ϑphys = ↓ sin εh+ cos εϑ (6)

with masses

m
2
h/ε

= ωωv
2
ε
+ ωHv

2
h
±

√(
↓ωωv

2
ε
+ ωHv

2
h

)2
+ ω

2
ωH

v
2
h
v2
ε
, (7)

The conditions for the stability of the potential are

ωω > 0, ωH > 0, 4ωωωH > ω
2
ωH

, 2ωωµ
2
H

> ωωHµ
2
ω
, 2ωHµ

2
ω
> ωωHµ

2
H
. (8)

The last two conditions are trivially satisfied by a negative portal coupling. The condition is also always 4ωωωH > ω
2
ωH

is also always satisfied in this scenario since it can be re-written as w
2
/v

2 ↭ 0.5.

In an EFT language we could integrate out the massive dof, i.e. the Higgs, the potential for the dark Higgs reads

V (ϑ
↑
ϑ) = ↓µ̃

2
ω
(ϑ

↑
ϑ) + ω̃ω (ϑ

↑
ϑ)

2
+

ω
2
Hω

4ωHm
2
H

(ϑ
↑
ϑ)

3
, (9)

where µ̃
2
ω
↔ µ

2
ω
↓ ωHωv

2
H
/2 and ω̃ω ↔ ωω ↓ ω

2
Hω

/(4ωH). And given the previous consideration on the mixing it is

clear that we can neglect the 6 dimensional term to study the dynamics of the scalar potential and focus on a simpler

potential of the form

V (ϖ) = ↓
1

2
µ
2
ϖ
2
+

ω

4
ϖ
4
, (10)
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We can assume the DS mass term comes from the Higgs sector portal

μ̃2
ϕ ≡ −

1
2

λHϕv2
H
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FIG. 2. In blue and green two lines where the negative mass term of the scalar is given by the portal coupling for di!erent

values of the quartic ωω.

Even though the portal coupling is tiny it can still be responsible for the thermalisation of the dark sector if

ωHω > 10
→7

via the scattering hh → εε. This translates into a lower bound on the mixing angles of sin ϑ ↭ 0.3↑10
→10

.

However, we will see now that the bound from the BBN nucleosynthesis is stronger. In fact, to preserve a successful

nucleosynthesis we require the dark scalar to decay with a width ! ↭ 1 s
→1

. In this regime (m > 2mµ) the decay

width is

! =
y
2
µ
sin

2
ϑ m

2
ε

16ϖ

(
1↓ 4

m
2
µ

m2
ε

)3/2

. (11)

(di”erent normalisation for< ε > wrt Jaime, here im using < ε >= w/2).

B. Scenario B: mε < 2mµ

(This also works for larger masses). We need an additional source of decay for ε as the decay ε ↔ ee is very

suppressed. We switch on the Yukawa couplings with neutral fermions (some sterile neutrinos and some dark fermions).

We introduce 3 of them. We want to reproduce neutrino masses. The simplest would be to follow the Lagrangian

in the three portal model (but other options are also possible). The mixing between HNLs and active neutrinos will

allow the decay ε ↔ ϱϱ. It can be su#ciently fast if the mixing is not too small. The HNLs could be heavier or

lighter than ε. This leads to di”erent pheno. For simplicity, we take them here as heavier (but it could be interesting

to check the other cases as well).

TO DO:

1. Compute decay rate ε ↔ ϱϱ. It goes as ! ↗
1
4ϑU

4
h
2
N
mω.

2. Predict neutrino masses allowing Yukawa couplings with the HL.

3. Identify relevant parameter space (U
2
vs mN ) putting a lower bound for U

2
so that ! > (1 sec)

→1
and a line

corresponding to the value for which neutrino masses match the observed ones.

DONE:

The lagrangian we have is given by

L ↘ ↓L̄LH̃YϖNR ↓
1

2
N̄

c

R
µNR ↓ ϱ̄DYDL

NRε↓ ϱ̄
c

D
YDR

NRε
↑
↓ ϱ̄DMDϱD + h.c. (12)

which after SSB in both sectors generate the following mass matrix for neutrinos

M =





0 mD 0 0

m
T

D
µ $

T

DL
$
T

DR

0 $DL
0 MD

0 $DR
M

T

D
0




(13)
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Example: neutrino portal (mφ < 2 mμ)
The electron Yukawa is too small to allow fast decay via Higgs portal

Consider a neutrino portal: add right-handed neutrinos NR and dark fermions νD
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→10

.

However, we will see now that the bound from the BBN nucleosynthesis is stronger. In fact, to preserve a successful

nucleosynthesis we require the dark scalar to decay with a width ! ↭ 1 s
→1

. In this regime (m > 2mµ) the decay

width is

! =
y
2
µ
sin

2
ϑ m

2
ε

16ϖ

(
1↓ 4

m
2
µ

m2
ε

)3/2

. (11)

(di”erent normalisation for< ε > wrt Jaime, here im using < ε >= w/2).

B. Scenario B: mε < 2mµ

(This also works for larger masses). We need an additional source of decay for ε as the decay ε ↔ ee is very

suppressed. We switch on the Yukawa couplings with neutral fermions (some sterile neutrinos and some dark fermions).

We introduce 3 of them. We want to reproduce neutrino masses. The simplest would be to follow the Lagrangian

in the three portal model (but other options are also possible). The mixing between HNLs and active neutrinos will

allow the decay ε ↔ ϱϱ. It can be su#ciently fast if the mixing is not too small. The HNLs could be heavier or

lighter than ε. This leads to di”erent pheno. For simplicity, we take them here as heavier (but it could be interesting

to check the other cases as well).

TO DO:

1. Compute decay rate ε ↔ ϱϱ. It goes as ! ↗
1
4ϑU

4
h
2
N
mω.

2. Predict neutrino masses allowing Yukawa couplings with the HL.

3. Identify relevant parameter space (U
2
vs mN ) putting a lower bound for U

2
so that ! > (1 sec)

→1
and a line

corresponding to the value for which neutrino masses match the observed ones.

DONE:

The lagrangian we have is given by

L ↘ ↓L̄LH̃YϖNR ↓
1

2
N̄

c

R
µNR ↓ ϱ̄DYDL

NRε↓ ϱ̄
c

D
YDR

NRε
↑
↓ ϱ̄DMDϱD + h.c. (12)

which after SSB in both sectors generate the following mass matrix for neutrinos

M =





0 mD 0 0

m
T

D
µ $

T

DL
$
T

DR

0 $DL
0 MD

0 $DR
M

T

D
0




(13)

After symmetry breaking the mass matrix is generated
in the basis
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FIG. 3. Allowed parameter space as a function of the dark neutrino mass and the relative size of !X/MD, for a given active-

heavy neutrino mixing |Uω| which we look for in experiments. Each color corresponds to a given ratio !X/MD and the vertical

bands for larger masses correspond to the perturbativity bound.

where we have ordered the di!erent neutrino fields as n =

(
ω
c

L
NR ω

c

DL
ωDR

)
, where ωDX

represents just the

projection of ωD into a given chirality. In the following, we assume that ”DX
→ MD, µ. We find then the following

neutrino masses and mixings

mlight ↑↓mDµ
→1

m
T

D
,

msterile ↑µ+m
T

D
µ
→1

mD ,

mdark→ω ↑MD

(14)

where the dark neutrino forms a Dirac fermion. At leading order in perturbation theory ”DX
does not contribute to

light neutrino masses. This means that we can easily include 2 NR to explain oscillation data and parametrize mD

with the usual Casas-Ibarra to automatically acount for it. Then one single dark neutrino would already complete

the model.

1. check that the Yukawa couplings do not spoil the logarithmic behaviour of the potential needed for supercooling.

The final e!ect should simply be a global shift of the line, see Eq. 22.

2. Compute decay rate ε ↔ ωω. It goes as # ↗
1
4εU

4
h
2
N
mϑ.

The decay rate is given by

# ↑
mϖ

128ϑ

vϖ

MD

∑

ϱ

|Uϱ|
4

∑

X=L,R

Y
4
DX

. (15)

3. Identify relevant parameter space (U
2 vs mN ) putting a lower bound for U

2 so that # > (1 sec)→1 and a line
corresponding to the value for which neutrino masses match the observed ones.

See Fig. 3.

Given the mass matrix from Eq. (13), and assuming ”DX
→ MD, µ, we can diagonalize it perturbatively separating
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PRELIMINARY

The channel φ → ν ν can allow 
rapid decay of the dark sector


