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Evidence of a SGWB

PTA collaborations report evidence for a SGWB at 3.5 - 4 ¢ level

NANOGrav, arXiv:2306.16213 [astro-ph.HE]
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What is the origin of the observed signal?

There is one expected astrophysical source of SGWB
Supermassive Black Holes Binaries

NANOGrayv, arXiv:2306.16219 [astro-ph.HE]
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This motivates the exploration of alternative explanations
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First order phase transitions

A scalar field in a local minimum can tunnel O (T) = T 5\’ exp 5
to the true minimum via bubble nucleation 2nT T
107 S. R. Coleman, Phys. Rev. D 15 (1977), 2929-2936
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The bubble nucleation can generate GW via bubble
collision, sound waves and plasma turbulence

P. Athron, C. Balazs, A. Fowlie, L. Morris and L. Wu, arXiv:2305.02357 [hep-ph]
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How to compute the action?

Need to solve the "bounce equation"...
S. R. Coleman, Phys. Rev. D 15 (1977), 2929-2936
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Overshoot-undershoot method

C. L. Wainwright, arXiv:1109.4189 [hep-ph]

Popular 1. Solve the equations of motion for a trial value of ¢o;
numerical 2. Adjust the initial position ¢o depending on the asymptotic behaviour;
recipe: 3. lterate until the desired numerical precision is reached.

mmm () vershoot
e [ ndershoot
® Solution

Upturned potential, —V'(¢)

Field ¢
Figure from: P. Athron, C. Balazs, A. Fowlie, L. Morris and L. Wu, arXiv:2305.02357 [hep-ph]

The solution is an unstable point: small deviations from the correct ¢o value can result
in large differences of the asymptotic field value

Used in many public codes, but can be numerically demanding
Michele Lucente - Universita di Bologna 6 TeVPA 2025
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Tunnelling potential formalism

J. R. Espinosa, arXiv:1805.03680 [hep-th]
It is possible to redefine the equations of motion
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ELENA: EvalLuator of tunnEIlliNg Actions

We implemented the tunnelling potential formalism in a new public Python code

= O michelelucente / ELENA Q Type (/]to search 8 &~ +~ O I B8 a

<> Code () Issues 9 Pullrequests () Actions [J Projects [ Wiki () Security |~ Insights 3 Settings

3 ELENA Public <7 Unpin ® Watch 0 ~ % Fork 1 - Starred 7 v

¥ main ~ ¥ 1Branch © 0 Tags Q Gotofile t == About Q3

A software for fast and precise

ﬂ michelelucente Update README with documentation @B féd41e4 - 3 weeks ago (9 15 Commits computation of first order phase
transitions and gravitational waves
W data Fixed typo 2 months ago production in particle physics models
 examples Fixed typo 2 months ago 0J Readme
M src Updated notebooks 2 months ago & GPL-3.0license
A~ Activity
[Y .gitignore Update .gitignore 4 months ago A 7 stars
[ LICENSE Initial commit 4 months ago ® 0 watching
¥ 1fork
[ README.md Update README with documentation 3 weeks ago
Releases
0 README 58 GPL-3.0 license 7 =

No releases published

ELENA also provides all the tools to compute the SGWB from FOPT

(from the Lagrangian parameter inputs to the final gravitational waves spectrum)
in a fast and self-contained implementation

https://github.com/michelelucente/ELENA
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Going beyond approximations:

The fast computation of the tunnelling enables the use of integral
expressions that track the complete evolution of the transition
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ELENA employs ~ 20 milliseconds for tunnelling computation on Apple M2 processor
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l. Milestone temperatures computation

ELENA only assumes adiabatic expansion

drl

Cf?TVT (¢-|— (T) ) T)

- = —3H(T)

OrrV*1 (o4 (T),T)

P. Athron, C. Balazs, A. Fowlie, L. Morris and L. Wu, arXiv:2305.02357 [hep-ph]
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Il. Physical volume evolution

In an expanding Universe, the expansion of bubbles a
competes with the expansion of space itself

It is essential to check that the physical volume
in false vacuum is decreasing at percolation

dVphys
dt

d 3
= Vphys (1) a In (P (t)) +3H (1)| <0 Vohys () = a” (t) Py (¢)
P. Athron, C. Balazs, A. Fowlie, L. Morris and L. Wu, arXiv:2305.02357 [hep-ph],

P. Athron, C. Balazs and L. Morris, arXiv:2212.07559 [hep-ph]
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ELENA can readily compute the evolution of

physical volume in false vacuum at any temperature
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lll. Mean bubble separation computation

The inverse duration of the transition

1
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SGWB spectrum computation

ELENA computes the full SGWB spectrum for all the individual sources

Currently implemented the expressions from
J. Ellis, M. Lewicki, J. M. No and V. Vaskonen, arXiv:1903.09642 [hep-ph]

The user can readily use ELENA thermal parameters as input for further fittings
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Minimal Dark Sector model for SGWB

A particle physics model for a FOPT must include:

Scalar field to drive Gauge field make the
the phase transition transition 1st order

We demonstrated that a minimal dark sector composed of dark

photon Z’ and complex scalar ¢ can generate the observed SGWB
F. Costa, J. Hoefken Zink, M. Lucente, S. Pascoli, S. Rosauro-Alcaraz, arXiv:2501.15649

* 1 / 149h% * * *®
L =(Dyp) (D) - 12w 2" = Vge) V = —u3¢'e + A (¢"9)°

Assuming ,ugzo > (0 the U(1) gauge symmetry is spontaneously broken

_ 2 _ 2.2 2 ~q .2
Vo = Uy / \//lgp my, = 8pV; m, = 2/1901/90

For other possible models see e.g.

D. Borah, A. Dasgupta and S. K. Kang, arXiv:2105.01007 [hep-ph]; Z. C. Chen, S. L. Li, P. Wu and H. Yu,
arXiv:2312.01824 [astro-ph.CQOJ; A. Conaci, L. Delle Rose, P. S. B. Dev and A. Ghoshal, arXiv:2401.09411
[astro-ph.CO]J; J. Goncalves, D. Marfatia, A. P. Morais and R. Pasechnik, arXiv:2501.11619 [hep-ph]; S.
Balan, T. Bringmann, F. Kahlhoefer, J. Matuszak and C. Tasillo,arXiv:2502.19478 [hep-ph]
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Dark particles conformal mass ratio

A purely conformal Coleman-Weinberg model

(scalar QED) features a specific mass ratio M3 8x?

We do not assume a conformal model (i # 0 in the starting Lagrangian), but
we derive a relation for the couplings that give a conformal-like potential

* BP2 U¢ =1 GeV 5 1/4
BP4 1677, Ay
| — g gD—{ 3 [1—@(5+210g2)]}
6x10-1{  Ymin
—_— gg)ll

dp

4 x 1071 -

3x 1071 -

10—4 103 102
Ao

Models accounting for PTA data generally predict
a strongly correlated mass spectrum
See B. Sojka and B. Swiezewska, arXiv:2407.07437 [hep-ph] for detailed discussion on radiative vs explicit mass terms
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MCMC study of the model with ELENA

We interfaced ELENA with PTArcade to perform

a MCMC fit to NANOGrav 15-years data
A. Mitridate, D. Wright, R. von Eckardstein, T. Schréder, J. Nay, K. Olum, K. Schmitz and T. Trickle, arXiv:2306.16377 [hep-ph]

PTArcade MCMC results
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95.0% C.L. We collected more
BN 68.0% C.L. than 9 millions
955" samples
MAP (9,360,965)
] ¢  Bayes
HA— g
: ] # MLE
—0.1 7 -
2 : s Parameter MAP Bayes MLE
st
< 02 : log1 Ao -2.35 | —2.49 +0.28 | -2.82
g /. : S logy0 9D -0.16 | —0.19 £0.07 | -0.28
I | | i loggvg / MeV | 1.64 | 2.06+0.57 | 1.67
—:l,t:: { E ::i:}::::f ;
B~ 5 -
4 ’

“03 —02 —01
logy (QD)




h?Qgw

SGWB predictions

Predicted SGWB spectra in ELENA from the MCMC estimators parameters
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- Ao 449 x107% | 3.21x 1073 | 1.51 x 107?
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Conclusion

The computation of the nucleation rate in FOPT can be numerically
demanding, due to the nature of the bounce equation solutions

We released ELENA, a Python package based
on the more efficient tunnelling formalism

ELENA goes beyond common assumptions
usually employed in computing SWGB from FOPT

ELENA provides a full pipeline of computation,
from Lagrangian parameters to SGWB spectra

We introduced a minimal dark sector model, and interfaced ELENA
with PTArcade to perform a MCMC study on NANOGrav data

We carefully checked that the model can explain the signal, while complying with
several consistency criteria (completion of FOPT, physical true volume evolution, etc.)
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Precision-velocity trade-off in ELENA
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Pulsar Timing Arrays

A set of galactic millisecond pulsars, monitored to search
for correlations in the pulse time-of-arrival at Earth

Tonia Klein / NANOGrav Kai Schmitz, Sydney CPPC Seminar 29/08/2024

A monochromatic gravitational wave modifies the pulse period with red/blue shift

1 p'p

5

» R, () = J dt' Z(t)

0

The observable is the timing

residual for each pulsar
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International Pulsar Timing Array project
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Evidence of a time delay

PTA collaborations observe excess time delay in pulsar timing

NANOGrav, arXiv:2306.16213 [astro-ph.HE] EPTA and InPTA, arXiv:2306.16214 [astro-ph.HE]
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Hellings-Downs curve

The residual timing of a single pulsar is not informative of its origin

If caused by a stochastic GW background, the

residuals have a specific correlation among pulsars
R. W. Hellings and G. S. Downs, Astrophys. J. Lett. 265 (1983), L39-L42
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GW from FOPT

The spectral shape of the SGWB is characteristic of the production mechanism
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NANOGrav, arXiv:2306.16219 [astro-ph.HE]
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The new physics scale

The spectral shape of the SGWB signal observed by PTAs is peaked around 10 nHz

T
For a FOPT we expect  fyeu |Hz| = 107° ( >

100 MeV

104
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P —e- vev = 50 MeV
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¢ = 0.74986

f[Hz]

New physics scale lives at the sub-Gev scale
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The potential shape

The amplitude of the signal requires a slow transition,

typically realised in conformal-like potentials
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Figure from: S. Balan, T. Bringmann, F. Kahlhoefer, J. Matuszak and C. Tasillo,arXiv:2502.19478 [hep-ph]

A barrier is present until low temperatures to delay
the bubble nucleation from falso to true vacuum
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Portals with the Standard Model

A fully secluded and stable dark sector to account
for PTA data is in tension with cosmology

Sound waves, stable dark sector,
ignoring cosmological constraints

ANgg > 0.22: excluded by
BBN and CMB at 95% C.L.

1 B/H < 3: No percolation
B/H < 10: GWB is overestimated
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T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg and C. Tasillo, arXiv:2306.09411 [astro-ph.CO]

The dark sector must have portals to decay into SM states
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Example: Higgs portal (m¢ > 2 my)

Consider the most general gauge-invariant scalar potential
2 * * *
Vov = —uwyHH+ Mg (H'H)™ + (—p30*d) + Ag (¢ 62+ Aig (H'H) (¢*9¢)

We can assume the DS mass term comes from the Higgs sector portal

1/1 5
= — — A,V
5 “HVH
AGHURY A7 W
tan 26 = L4 ing ~ “He
H —)\g,vg,qt)\gv}% Sin g = N
hphys = cos0h + sin 0¢

Ophys = —sinBh + cos ¢

2
mi/so = Agbvi + )\HU% + \/(—)\qw?p + )\HU%) + )\iHU}%U?p
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Higgs portal (m¢ > 2 my)
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Example: neutrino portal (mg < 2 my)

The electron Yukawa is too small to allow fast decay via Higgs portal
Consider a neutrino portal add right-handed neutrinos Nr and dark fermions vp
LD LLHY Np — §NR/LNR — VDYDLNR¢ — VDYDRNRQb —vpMpvp + h.c.

(0 mp 0 0)

After symmetry breaking the mass matrix is generated T AT, AT
. _ M = mp M D; ‘‘Dg
in the basis n = (uz Ngr vp, VDR) 0 Ap, 0 Mp

L e e S S RS ; K 0 Apg Mg 0 )
%, PRELIMINARY |
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