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SNII as laboratory for new physics

▶ nuclear density and T = O(10) MeV in core makes SN
potentially efficient producers of light, very weakly coupled new
physics, e.g. axions, dark photons, sterile neutrinos ...

▶ dynamics in core shielded by mantle → most constraints based
on one observation: neutrinos from SN 1987A

▶ few events but roughly consistent with expected cooling of
proto-neutron star

▶ limits typically based on "Raffelt criterion": luminosity in new
physics less than neutrino luminosity
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Can we do better?

▶ neutrino observations: wait for next galactic SN

⇒ Need other observables if we want to do more now.

▶ produced particle can escape and decay/convert to SM
see e.g 1702.02964, 1903.07923 ...

▶ What happens if the energy goes to the dark sector? Can SN
energy injection affect DM observables at a detectable level?
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Dark Matter Halo
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Density profiles of dwarfs spheroidals

photo for Fornax dwarf galaxy

▶ velocity distribution of stars traces gravitation potential, i.e. mass
profile

▶ overall mass dominated by dark matter
▶ can determine density profile from stellar kinematics
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Cuspy vs cored profile

0.01 0.05 0.10 0.50 1 5 10

0.001

0.010

0.100

1

10

100

r/rs

ρ
[a
rb
.u
ni
ts
]

▶ expectation from DM only simulations: NFW profile
▶ observations: some dwarfs prefer a core
▶ some physics missing:

▶ non-standard DM, e.g. fuzzy, self-interacting, ...
▶ astrophysics: baryon feedback
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Simulations with baryon feedback

Read et al ’15, 1508.04143

▶ Baryon feedback can transform an originally NFW cusp into a
core

▶ Baryon feedback is gas flows driven by SN explosions
see also talk by A. Di Cintio

rather inefficient process ⇒ What about direct energy injection?
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Dwarf spheriodal halo profiles
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input data from Read et al ’18, 1808.06634
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Gravitational binding energy

▶ cored halos have more material at larger radius ⇒ less
gravitational binding energy

▶ need additional energy to transform a cuspy to a cored halo
▶ ∆E is a function of rc

▶ from gravitational binding energy and virial theorem

∆E = 8πG
∫

dr r [Mc(r)ρc(r)− MNFW (r)ρNFW (r)]

▶ taking upper limit on rc → ∆Emax ∼ 1051 to 1054 erg
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SN as energy sources

▶ type II (core collapse) supernova typically release about
3 × 1053 erg of which only about 1% goes into visible explosion

▶ all stars with 8m⊙ ≲ m∗ ≲ 40m⊙ explode on time scales much
less than age of galaxy
⇒ only need to know fraction of stars in this mass range and
overall stellar mass

▶ stellar mass: measured
▶ mass distribution of stars: assume Kroupa initial mass mass

function, ≈ 3 × 10−3 stars in right mass range

Etot ≈ 2.5
M∗
m⊙

× 1051 erg with M∗ ∼ 106m⊙
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Allowed energy fractions
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of observations
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Particle physics
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Key questions

▶ Can we produce enough exotic particles?
▶ Can they travel astrophysical distances?
▶ Can they deposit their energy in the dark matter halo?

Consider benchmark model:
▶ here: dark Higgs, i.e. singlet scalar mixed with Higgs and

coupled to dark matter
▶ results qualitatively similar for: dark photon, B − L and Lµ − Lτ
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Answers

▶ Can we produce enough exotic particles?
Efficient production via nucleon bremsstrahlung and semi-Compton.
O(1) of SN energy emitted in s for sin θ ≈ 10−7.

▶ Can they travel astrophysical distances?
Yes, if ms < 2me. Alternative: for 2mχ < ms we have fast decays to
DM. DM can travel across the halo.

▶ Can they deposit their energy in the dark matter halo?
For efficient scattering in halo we need:

σ ≳ (1 − 2)× 10−25cm2 · mχ

MeV

largish cross section: need mDM ≲ 100 MeV and gDM ≳ 0.01 - 1
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Putting everything together
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Conclusions

▶ total energy release from SN explosions over lifetime of galaxy is
huge

▶ for O(1) energy absorbed dwarf galaxies sensitive to ≈ 10−5 of
total energy release

▶ conditions for sufficient energy release and efficient absorption
possible in a range of simple benckmark models (dark photon,
dark Higgs, B − L, Lµ − Lτ )

▶ halo shape allows testing couplings well beyond usual SN1987a
bound, two orders of magnitude improvements possible
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