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Pierre Auger Collaboration,

UHECRSs; arrival directions 0705 007" s
= e

Dipole at E > 8 EeV gy V46

* No clearly confirmed sources yet, but indications of

anisotropies in the arrival directions have been ,,,,,, _

detected. | : 3

« Dipole at E > 8 EeV. AU, e i > e 180 | 042 E'“

+ Indication for an extragalactic origin of UHECRs. \ % " = ke
 Intermediate-scale anisotropies at E > 38 EeV. o o

0.38

Larmor radius: r = £
""L ™ zeB o

Intermediate-scale anisotropy
at E > 38 EeV 5.6

—
Qo
o
—
=
(0) ddouedyTUSIG 820

.................

Pierre Auger Collaboration, — .
ApJ Lett 853 (2018) 2 -90
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UHECRSs; dipole Seoncs 357 (2017) 6537 90

W i
L

* No clearly confirmed sources yet, but indications of
anisotropies in the arrival directions have been
detected.

- Dipole at E > 8 EeV. ol A

* Indication for an extragalactic origin of UHECRSs.

RO - - < e

- 6.80 significance . A

« Amplitude: ~7%
 No significant quadrupole or other multipole

Dipole at E > 8 EeV gy V46

0.38

E>8EeV Pierre Auger Collaboration,

moments. 0.007
 Possible origin: 0.006 ¢

* Inhomogeneous distribution of the local large- 0005k

scale structure (e.g. Lang et al. 2021; Ding et al. 2021; 0.004}-

Allard et al. 2022; Bister & Farrar 2024 ) (3’0.003_

* The existence of one or more bright local sources

¢ Data ApJ 976((2024) 48

|:| Isotropic 99% C.L.
— Upper Limit: 99% C.L.

.’....,.....................---..............‘.........‘...-.-.-.---.....

combined with UHECR propagation through "

Galactic (GMFs) and/or extragalactic magnetic 0.001¢ *

fields (EGMFS) (e.g. Mollerach & Roulet 2019; Eichmann et e =

al. 2022; Mollerach & Roulet 2024) e ma

10, 12 14 16 18

20



Giant, turbulent Galactic magnetic field halo

« Can we see the difference between the two possible origin scenarios?  Shaw, AvV, Taylor, MNRAS, 543 (2025) 3242
« Assume: a giant, turbulent Galactic magnetic field halo

* Motivation:
* Indications that a considerable level of thermal gas pressure exists out in the halo of the Milky Way and
other local galaxies of a similar mass (Martynenko 2022; Bregman et al. 2022; Hopkins et al. 2022; Zhang et al. 2024)

« Consistent with recent radio observations of the circumgalactic medium region of local galaxies (Heesen et

al. 2023)
» Track cosmic rays through a giant, turbulent Dipole setup Beam setup
Galactic magnetic field halo for different P \ g =
extragalactic distributions: 4 R-30kpe B # R~ 30kpc
. g P
» Pure dipole ;.
» One or more beams / Ro~ 150 pc i e -.
J Ext. Dip l‘ ® - @ Beam |

Tl U e AT




' U'HECR propagation:
.+ Deflections’ by magnetic fields,

Interactlons with CMB and EBL
0N Nuclear decay

C ’R'/Pzro pa 0

£ See crpropa desy de; Alves Batista etal., JCAP 09 (2022) 035 »
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Simulated ExtraG. dlpole observed map Single beam observed map

Observed
Skymaps

Shaw, AvV, Taylor, MNRAS,

543 (2025) 3242
 For the same scattering
length of 80 kpc, where -0.02 0.02 -0.13 0.13
Lgcat X L Power spectrum of observed maps
Leon Three beam observed map 10° T —— ExtraG. dipole
 Dipole can be extracted in all - N —— Single beam
3 cases. Most significant M — Three beams

dipole for the 1-beam case, '{{I .L \“
least significant dipole for 4

the 3-beam case. “\“ ..f;,_ ,‘?F

el L s 5
B H(ﬂ 10
10‘6—5
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Dipole vs Quadrupole

« Expected dipole and quadrupole increase for increased scattering length.
* Dipole and quadrupole get suppressed by magnetic-field deflections.
« Exception: quadrupole of the Extragalactic Dipole scenario.
« The Quadrupole can distinguish between different scenarios, especially at larger scattering lengths

rigidities). -
rgidities) Dipole Quadrupole
I P O B — e
..... J:.._._._._:._._._._._._._._._._._,_._._._,_._._._.D.EI_._.B_._._.B_._._._.. 100 | siat = R) ] O
L S i e S LR mRE R K SE e =
1 beam [ *x % -
i %gﬁéﬂ ﬁ g;;ﬁ 1beam599 B 88 g g
| % % " g 101 0 3 beams
g 107 E S0 009=—"0C—1, 0 ® |
o) EExtraG. Dip @Q Q ® o ° o W E ExtraG. Dip
: @ ® o o 2 @ %Q )¢
@ 3 beams @ ¥ ¥ XX % W
i | Noise x o
i Noise | 1073 -
103 | ] . e : — : R : R . .
107 103 102 16°

Din « Lscat [kpc]l  Shaw, AvV, Taylor, MNRAS, 543 (2025) 3242  Din x Lscat [kpc]
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Intermediate-scale anisotropies at the highest energies

Intermediate-scale anisotropy

* No identified sources yet, but indications of I, — at E > 38 EeV 5.6
anisotropies in the arrival directions have been sy L
detected. 3
* Intermediate-scale anisotropies at £ > 38 EeV. -
Larmor radius: r; = 7oB | =
2
' g
Pierre Auger Collaboration, — -5.6
ApJ Lett 853 (2018) 2 -90
Catalog E:in [EeV] Fisher search radius, © [deg] Signal fraction, a [%] TSmax Post-trial p-value
All galaxies (IR) 40 167 ¢! 161" 18.0 7.9 %1074
Starbursts (radio) 38 151 g+é 25.0 3.2x107°
All AGNs (X-rays) 39 1675 75 19.4 42 x107*
Jetted AGNs (4-rays) 39 14+8 673 17.9 8.3 x 1074

Pierre Auger Collaboration, Astrophys. J. 935 (2022) 170
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UHECRSs; intermediate-scale anisotropies

Pierre Auger Collaboration, Astrophys. J. Lett. 853 (2018) 2
Pierre Auger Collaboration, Astrophys. J. 935 (2022) 170

o
)

 Largest post-trial significance for
correlation with starburst ;

galaxies. 30

» Catalogue of 32 nearby galaxies .
 Most important sources:

+ NGC 253, NGC 4945,
Circinus and M83 ()

* 4 nearest sources in the
catalogue within the field of
view of Auger

o
o
(0) @duedyIUSIG [0

&
=N

CenA ~

Most contributing Source to

2MRS, y-AGNs ant Swift-BAT

NGC 4945 yﬂﬁl?osztg?ntrihuting
ﬂgﬁ;gﬂs"tt"hu“"g source to source to starburst

ICRC 2019 presentation by L. Caccianiga



Auger’s analysis, including magnetic fields
« Redo Auger’s analysis, using EGMFs instead of a Fisher distribution around sources.

* Neglect GMF: conservative limit on the strength of the EGMF.
 Starburst galaxies catalog: similar results for appropriate magnetic-field strength.

latitude

Starburst galaxies (radio), B = 3.4 nG Mpcl/2

75° Galactic
60°

- C 4945

0° ISEEI20° 90° 60° 30° GC 33 270° 240°210°

-15°

-60°

I
0.0 0.2 0.4 0.6 0.8 1.0
Model flux, (Eauger = 38 EeV) [arb. unit]

=75° onituk

Al-Zetoun, AvV, Taylor and Winter, arXiv:2506.16169

latitude

-15°

Starburst galaxies (radio) - W = 25°
75° Galactic

15°

-75° lon ‘>ifud'e |
0.0 0.2 0.4 0.6 0.8 1.0
Model flux, ®(Eauger = 40 EeV) [arb. unit]

Auger
Pierre Auger Collaboration, Astrophys. J. Lett. 935 (2022) 170




Auger’s analysis, including magnetic fields
« Redo Auger’s analysis, using EGMFs instead of a Fisher distribution around sources.

* Neglect GMF: conservative limit on the strength of the EGMF.
 Jetted AGN catalog: different results due to additional distance dependence.

Jetted AGN (y-rays), B = 2.9 nG Mpcl/2 Jetted AGN (y-rays) - W = 25°
75° Galactic

ke
|

75°  Galactic

60°
45°

30°

| A
1509120° 90° 60° 30° GC 33’° 270° 240°210°

NGC 1275

15° 15°

latitude
o
latitude
o

-15° +~15¢

-30°

-60°
|

-75° longitude -75° longitude

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Model flux, (Eauger = 41 EeV) [arb. unit] Model flux, ®(Eauger = 40 EeV) [arb. unit]
Al-Zetoun, AV, Taylor and Winter, arXiv:2506.16169 Auger

Pierre Auger Collaboration, Astrophys. J. Lett. 935 (2022) 170
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Test statistic comparison

« Scan over threshold energy, signal fraction, magnetic-field strength (instead of angular width around source)
« Compare with Auger’'s UHECR data

Starburst galaxies (radio) Jetted AGN (y-rays)
i 1 T 1
25: | ! —— Auger model 25 Lo E —— Auger model
] i i —— Our model Lo ! —— Our model
20 - - 20° » i
wn 1 1 ! wn !
= l = '
Y. X ' 9]
-E’ 15; E E 3 15-
S | : ©
O 1Al I [ »
% 1] | : 10
()] 1 | 1
3] | l 5
J 1 1
J 1 |
N |
03540 45 S0 55 60 65 70 75 80 03540 45 50 55 60 65 70 75 80

Al-Zetoun, AvV, Taylor and Winter, arXiv:2506.16169



Signal fraction, a [%]

EGMF strength

« EGMF only, no GMF
 Provides upper limit on EGMF strength
« 90% C.L. upper limit: B < 4.4 nG Mpc'’2 (Starburst galaxies); B < 6.7 nG Mpc'2 (Jetted AGN)

Starburst galaxies (radio) Jetted AGN (y-rays)

30 25 30 ]
25 20 '0\_0'25
20 2 S 20
159 c
pr} (@]
o 5
15 & 215
1070 &
w —
10 v
= glo
5 - —
5 N g
10° ] 10! 0 109 10!
EGMF strength, B [nG Mpc'/?] EGMF strength, B [nG Mpc1/2]

Al-Zetoun, AvV, Taylor and Winter, arXiv:2506.16169

= N N
u o (9)

Test statistic, TS

[
o



Conclusions | ool L= po O
10 B B8 o 0O =0
_ O
* Dipole/Quadrupole: | 1 beam D% B 88s g g
« Quadrupole in UHECRS can distinguish between 10~ 0 3 beams
different UHECR origin scenarios, even if the dipole g 0@ _
cannot EEI % ExtraG. Dip
. -2 ! W
Shaw, AvV, Taylor, MNRAS, 543 (2025) 3242 102 Mg % = Z\f ESSEs
® o ¥ %% *x
$ *
Noise *
u 3 L] _3
* Intermediate-scale anisotropies: i . = =
. . 2 3
« Conservative assumptions: neglect GMF. 0 Din & Lecat [KpC] w0
* 90% C.L. upper limits: B < 6.7 nG Mpc'/? . Starburst galaxies (radio) 25

w
o

* Limit on average EGMFs in between sources and
Milky Way, not necessarily in voids

N
w

N
o

Al-Zetoun, AvV, Taylor and Winter, arXiv:2506.16169

Signal fraction, a [%]
o O

ul

EGMF strength, B [nG Mpc'/?]

Test statistic, TS
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Simplified description of UHECR deflections

 For turbulent magnetic fields (spread around the source position):

UHECR ec N D Magnetic-field
; properties

 For a uniform magnetic field (shift of the source position):

UHECRs ec ’ Magnetic-field
properties

» Event-by-event rigidity (Auger Prime) will be a huge benefit!
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Scattering length
) . l0910(Btyr [UG])
 Scattering I.ength as a function of the 116 096 076 056 036 016 -004 -0.24
Larmor radius and EGMF strength ' | ' ' ' ' ' '
3.5+ * Lconh = 1 kpc ** /
Shaw, AvV, Taylor, MNRAS, 2 /'
543 (2025) 3242 — Lot =M ** _
3.0- e ‘
i ** R
| pA¢ ol
=2.5- %rL"'Lcoh 7
o i ** 7
= i ¢ -
520- B e
S Y. €a$ e
. i s
R A
R
1.0- NG
7
T
05+ .~ |
i
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

logio(r [kpcl)



Injected maps

Shaw, AvV, Taylor, MNRAS,
543 (2025) 3242

ExtraG. diolejted map

S

Three beams injected map

Single beam injected map

Power spectrum of injected maps

0_.
e —— ExtraG. dipole

—— Single beam
—— Three beams
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Signal fraction and EGMF strength
A. Al-Zetoun, AvV, A. M. Taylor and W. Winter, arXiv:2506.16169

Starburst galaxies (radio) Jetted AGN (y-rays)

28 : : 281 1 :
! ! —— Auger model 1 b ! —— Auger model
24 i i —— Our model 24 P i —— Our model
X i | X P i
S0 = 5 20 N |
- I ~ 1 1 I 1
S 16- ! 3 16- P !
s i i 5 ] Lo i
= 1 1 = 4 1 1 1
T i | T A i
c J ] 1 c 4 1 I ]
5 8 : ! 5 & P :
n i i v i i
4 i i 4+ Lo i
| i ; B |
0 35 40 45 50 55 60 65 70 75 80 0 35 40 45 50 55 60 65 70 75 80
Threshold energy, Ew, [EeV] Threshold energy, Ew [EeV]
Starburst galaxies (radio) Jetted AGN (y-rays)
— I I —_ I ]
2 i i | i
|9 1 ] (] 1 1
& 10l 1
2 10 E i §10 ] i i
(@] 1 1 1 1
£ i i g | |
p _\/i\/\/_/'/ : P i :
N 1 = 1 1
5 i ! :‘Em : i
[ 1 1 1 1
) i i o i H
= i i 7 i i
m 1 1 1 1
L 10°. | | < 100 i i
] 1 1 ] 1
Q : ! o ] :
| ! | \

35 40 45 50 55 60 65 70 75 80 35 40 45 50 55 60 65 70 75 80
Threshold energy, Ey, [EeV] Threshold energy, Ew, [EeV]



Magnetic-field limits from other UHECR papers

« Both upper limits and lower limits on the strength of EGMFs can be obtained from UHECR measurements,
under specific assumptions.
« Conservative assumptions: UHECRSs anisotropy produced in sources at ~3-4 Mpc distance.
* 90% C.L. upper limits: Beemr S 20 NG Mpc'/2. Avv, Palladino, Taylor and Winter, MNRAS 510 (2021) 1289
« Limit on average EGMFs in between sources and Milky Way, not necessarily in voids.

« More aggressive assumptions: typical source distance of ~70 Mpc, and Auger or TA hotspot, or assume
continuous sources following the LSS of the Universe.

* Limit at the level of Bgcmr < 0.2 NG Mpc'/2. Bray and Scaife 2018,
« Limit more likely to actually correspond to EGMFs in voids.

 Lower limit obtained assuming JF12 GMF deflections and source densities not too large:
° ,BEGMF = 0.2nG |\/|pC1/2. AwV, A. Palladino, A. M. Taylor and W. Winter, MNRAS 510 (2021) 1289

 Limit on average EGMFs in between sources at ~3-4 Mpc and Milky Way, not necessarily in voids.



The analysis performed by Auger

« Catalogue of 32 nearby star-forming galaxies
* Probability density maps, 2 components:
* |sotropic component (equal probability everywhere)
 Anisotropic component from the star-forming galaxies
* Anisotropic component:

* Fisher distribution centred on the source coordinates
(width 6)

» Source flux proportional to radio emission +
attenuation factor from UHECR energy losses

« Ratio between isotropic and anisotropic component:

faniso

 Maximume-likelihood analysis:
 Location of UHECR events X probability density map
« Compared with isotropic probability density map

uondel4 aidoxosiuy 5gs

500

]!

60
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[
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= I — )
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Starburst
y-AGNs
Swift-Bat
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