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Thermal Dark Matter Window
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Thermal Dark Matter Window

Thermal equilibrium between DM .
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Thermal Dark Matter Window .~ .o &
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Light Dark Mattef Status
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Light Dark Mattef Status
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LDMX Light D_ark Matter E'Xperiment -+
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Summary of Thermal Targets

* 1ncluding vector DM!
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Summary of Thermal Targets

* including vector DM!
Mass Hierarchy: 8
Mpy < mmed/ 2 |T
P

L = (12 = (.12, Vector DM (NEW)
10-8 [ == QA% =0.12, Scalar DM
L weee QA2 =0.12, Pseudo-Dirac DM -
| = Q% =10.12, Majorana DM = !
10—9 ] -_—‘/‘ /l (A
1,
----- L
10~ - - |l %
) ‘l...‘; I :
// \\\ —-I /-
11 4 2 1~, 74
1011 I 5~ ~ - - —— — e - - RO O 7K 7oK
\/I
10712 4
I -, L
13 —”/'/ “““ ,,//
10_ : Tt ‘," e
-“‘ //’
L LT S Qh? =0.12
10~ 14 Ls** P s Vector SIMP DM (NEW)
B -~
B -
i P ap =0.5
Lo—1® ':’”’ ma/mx = 3.0
_ mg,/mx ~ 2.0 [R. Catena and T. Gray]
1016 ‘ . : 1 ; N : M S P
1072 102 101 10°

my [GeV]




Light Vector Dark Matter Scenario

- ya — X*X~ Vector DM
H Z' “Dark Photon”

Dark SU(2) 1

OFS (doub]et) gives mass to dark
ZD (tl‘ipl et) gauge bosons

gives more mass
to the DM

Reversed Mass Hierarchy:
Mpy > mmed/ 2

[A. Banerjee, R. Catena, T. Gray, arXiv: 2511. XXXX]
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Invisible Vector Meson Decay
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Invisible Vector

Meson Decays Direct Detection
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Beyond ordinary
kinetic mixing!
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Production ~Qf Dark Photons through Higher Electromagnetic Mogpents at LDMX

* ordinary kinetic mixing (KM)
* magnetic dipole (M)
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Production \.o.f Dark Photons through Higher Electromagnetic Mogpents at LDMX

- .

* ordinary kinetic mixing (KM) — . —= L — Ly
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 In addition to
— DP model reconstruction?

counts

* Break degeneracy between groups with both
E, and |prlg
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Ab-Initio Modeling of the Target Nucleus
using Many-Body Methods

€ DM




Ab- ‘Initio Modeling of the Target Nucleus

. usmg Many Body Methods , -
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| Ab-‘Initi’d Modeling of the Target Nucleus
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How can we validate that an LDMX signal 1s of DM nature?

Electron |Py| Distributions, 50 MeV < E, <12 GeV, pz>0

— a direct detection signal |
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Required Direct Detection Exposure
mpy =4 MeV - 0.0013 kg-yr
mpy = 25 MeV — 1.9 kg-yr

Experimental Status
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& It s an exciting time for Light DM searches!
" ypcoming experiments (such as )

N\

= extending the sensitivity frontier for a rich array of light DM theories

= However, we need to:
= Know how to deal with a potential signal
= Properly model the signal + background

= Nuclear structure can play a role!
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Light Dark Matter Status

Indirect Detection

« CMB energy injection | 51 7 /S
Direct Detection =
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* ¢~ Incident on a thin
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« Charged particle tracker
and calorimeters to @ ®)
measure DM signature > 1ATUS

. _ * Completed tests of upstream beam (results available soon)

* Recail electron pT accompanled « LDMX beam into experimental area and the vertical slice test (This year)
by _ak_)sence of other particle  Measurements with HCal prototype in the experimental hall (early 2026)
activity * Begin construction in late 2026 (~3 years)
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Kinematic
Distributions at

counts

LDMX

my = 0.1 GeV my = 0.5 GeV my = 1.0 GeV

e 3 groups

counts

* Characterized by overall cross
section size and momentum
dependence in Lorentz
structures of models
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LDMX phase II
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