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Motivation Source Detection with Neural Ratio Estimation

= The gamma-ray sky seen by the Fermi Large Area Telescope (LAT) at GeV energies is comprised of a

multitude of Galactic and extragalactic source populations as well as diffuse emissions. Source detection in SBI language:

= Additional exotic signatures like pair-annihilating thermal dark matter are typically a sub-dominant Given the actual observed sky, what is

contribution requiring a very good knowledge of all astrophysical gamma-ray emissions. the probability of observing a source at

= As shown with a toy setup in |1], simulation-based inference (SBI) allows for a comprehensive treatment of a certain position with flux 3 exceeding

: : a certain threshold S;7
source detection and parameter inference. th

= This framework extracts at the same time information from the detected and sub-threshold parts of source
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populations thereby accounting for detection biases. \
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= No external high-level data products like source catalogues that rely on different data selection criteria, ‘ ; e ' r(€2, Sth; X) =
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sources (pulsars), the diffuse Milky Way foreground and a diffuse isotropic background (IGRB). We introduce Galactic Longitude 2 Galactic Longitude
variations of the diffuse foreground via Gaussian random fields.
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. %,_-n EXpOSMe PSF ! = Detection efficiency calibration: Performed on simulated data. It allows us to recover up to 98% of the
g J @ ‘ * —> brightest gamma-ray sources detected with traditional methods (4FGL-DR4 source catalogue [6]).

Results: Inferring the high-latitude source-count distribution
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Assessing the degree of model mis-specification via anomaly detection g g
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= We probed the realism of our simulated gamma-ray sky in relation to the observations of the Ferm: LAT via il il
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anomaly detection. We employed the so-called One-Class Deep Support Vector Data Description (SVDD) § [phom=2s-1] S [phem=251

method |[3].

Idea: Map high-dimensional data onto a predefined lower-dimensional manifold. New target data points that
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significantly deviate from this manifold are identified as anomalies. Inference of the source-count distribution’s profile: We employ two distinct approaches to reconstruct

the high-latitude source-count distribution: (i) parametrically using autoregressive neural ratio estimation to
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LAT data ] obtain the joint posterior with subsequent nested sampling and, (7i), non-parametrically inferring the flux of
FGMA diffuse data - the profile per flux bin directly. Both approaches yield consistent results.
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Our work demonstrates that simulation-based inference is a robust tool capable of performing source

detection in noisy datasets such as gamma-ray observations as well as parameter inference regarding

T eI v mm——— E physically relevant observables as the high-latitude source-count distribution.

or have a look at E

Our framework for gamma-ray simulations and inference lies the foundations for future

on the project, ) L applications to more detailed physics questions like the composition of the IGRB. This requires:

our paper! = Fxtension to the handling of multiple energy bins, i.e. multiple image input channels to capture the spectral
come and talk to this guy E 1 dependence of the occurring components.
= [n parallel to source detection, we implement source classification to distinguish multiple gamma-ray

source populations.
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