
Motivation 

➡ The gamma-ray sky seen by the Fermi Large Area Telescope (LAT) at GeV energies is comprised of a 
multitude of Galactic and extragalactic source populations as well as diffuse emissions. 

➡ Additional exotic signatures like pair-annihilating thermal dark matter are typically a sub-dominant 
contribution requiring a very good knowledge of all astrophysical gamma-ray emissions. 

➡ As shown with a toy setup in [1], simulation-based inference (SBI) allows for a comprehensive treatment of 
source detection and parameter inference. 

➡ This framework extracts at the same time information from the detected and sub-threshold parts of source 
populations thereby accounting for detection biases. 

➡ No external high-level data products like source catalogues that rely on different data selection criteria, 
assumptions and model simplifications are needed. 

We present our results [2] obtained from analysing high-latitude data of the Fermi LAT to infer the 
source-count distribution of (mostly) extragalactic point-like sources in combination with a catalogue 
of sources detected by our SBI method. The analysis exploits gamma rays events from 1 to 10 GeV binned into a 
single image of the high-latitude gamma-ray sky.
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Conclusions and outlook 

Our work demonstrates that simulation-based inference is a robust tool capable of performing source 
detection in noisy datasets such as gamma-ray observations as well as parameter inference regarding 
physically relevant observables as the high-latitude source-count distribution.   
Our framework for gamma-ray simulations and inference lies the foundations for future 
applications to more detailed physics questions like the composition of the IGRB. This requires: 
➡ Extension to the handling of multiple energy bins, i.e. multiple image input channels to capture the spectral 

dependence of the occurring components.  
➡ In parallel to source detection, we implement source classification to distinguish multiple gamma-ray 

source populations. 

Source Detection with Neural Ratio Estimation 

Results: Inferring the high-latitude source-count distribution 

➡ Detection efficiency calibration: Performed on simulated data. It allows us to recover up to 98% of the 
brightest gamma-ray sources detected with traditional methods (4FGL-DR4 source catalogue [6]).

➡ Neural Network framework: 
We use the DeepSphere architecture [4] 
and HEALPix routines translated 
into pytorch syntax [5]. 

Figure 1: Overall NN architecture, showing here three convolutional layers acting as feature extractors followed by three fully connected layers with
softmax acting as the classifier. A convolutional layer is based on five operations: convolution, non-linearity, batch normalization, down-sampling,
and pooling. While most operations are agnostic to the data domain, the convolution and the down-sampling have to be adapted. In this paper, we
propose first to model the sphere with a graph and to perform the convolution on the graph. Graphs are versatile data structures which can model
any sampling, even irregular or partial. Second, we propose to exploit a hierarchical pixelization of the sphere for the down-sampling operation. It
allows the NN to analyze the data at multiple scales while preserving the spatial localization of features. This figure shows a network that operates
on the whole sphere. The process is the same when working with partial observations, except that the graph is only built for the region of interest.

So far these algorithms have mostly been demon-
strated on Euclidean domains, such as images. The
main challenge in designing a CNN on the sphere is to
define a convolution operation that is suitable for this
domain, while taking care of the necessary irregular
sampling. Moreover, the designed convolution and re-
sulting NN should possess the following three key char-
acteristics. First, the convolution should be equivariant
to rotation, meaning that a rotation of the input implies
the same rotation of the output. Sky maps are rota-
tion equivariant: rotating a map on the sphere doesn’t
change its interpretation. Depending on the task, we
want the CNN to be either equivariant or invariant to
rotation.2 Second, to be able to train the network in rea-
sonable time, the convolution has to be computationally
e�cient. Third, a CNN should work well on parts of the
sphere, as many cosmological observations cover only a
part of the sky. For ground-based observations this can
be due to limited visibility of the sky from a particular
telescope location, and for space-based instruments due
to masking of the galactic plane area (see Figure 2 for
example maps).

Three ways of generalizing CNNs to spherical data
have been pursued. One approach is to apply a standard
2D CNN to a grid discretisation of the sphere [20–22].
An alternative is to divide the sphere into small chunks
and project those on flat 2D surfaces [9, 11, 12, 23].

2When only the statistics of the maps are relevant, they are rotation
invariant.

While these approaches use the well-developed 2D con-
volution and hierarchical pooling, they are not equivari-
ant to rotation. Another way is to leverage the spherical
Fourier transform and to perform the convolution asso-
ciated to the SO(3) rotation group in the spectral do-
main, thanks to the convolution theorem [24, 25]. While
the resulting convolution is equivariant to rotation, this
approach is computationally expensive, even if a fast
spherical Fourier transform is used. Moreover, all those
methods cannot be much accelerated when maps only
span a part of the sky.

Our spherical CNN leverages convolutions on graphs
and hierarchical pooling to achieve the following prop-
erties: (i) rotation equivariance, (ii) computational e�-
ciency, and (iii) partial sky observations. The main idea
is to model the discretised sphere as a graph of con-
nected pixels: the length of the shortest path between
two pixels is an approximation of the geodesic distance
between them. We use the graph CNN formulation in-
troduced in [26], and a pooling strategy that exploits
a hierarchical pixelisation of the sphere to analyse the
data at multiple scales. As the Equal Area isoLatitude
Pixelisation (HEALPix) [27] is a popular sampling used
in cosmology and astrophysics, we tailored the method
to that particular sampling. DeepSphere is, however,
easily used with other samplings as only two elements
depend on it: (i) the choice of neighboring pixels when
building the graph, and (ii) the choice of parent pixels
when building the hierarchy. The flexibility of modeling
the data domain with a graph allows one to easily model

2

➡ Inference of the source-count distribution’s profile: We employ two distinct approaches to reconstruct 
the high-latitude source-count distribution: (i) parametrically using autoregressive neural ratio estimation to 
obtain the joint posterior with subsequent nested sampling and, (ii), non-parametrically inferring the flux of 
the profile per flux bin directly. Both approaches yield consistent results.
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FIG. 3. Schematic overview of the Bayesian hierarchical model implemented in our gamma-ray simulator. The definitions for
all symbols are provided in Tab. I. Boldface symbols refer to quantities at the sky-map level. The technical details of the steps
visualized in the upper part of the sketch resulting in the point-source map c are outlined in Sec. III B while the simulation of
the background map b in the lower part of the figure is described in Sec. III C. Information about exposure maps and LAT PSF
handling are given in Sec. III A. Diamond-shaped nodes represent deterministic quantities, circular nodes represent stochastic
quantities, and nodes with dashed lines (the Gaussian Random Field component) denote components excluded (in Sec. V B)
or included (in Sec. V C 1) explicitly in our analysis.

posing any functional form. Finally, Sec. IV C describes
the neural network architectures that implement these
methods.

A. Simulation-based inference

Simulation-based inference (SBI) encompasses a suite
of methods for performing inference of parameters, z,
given observed data, x, in which the model is not repre-
sented by an explicit probability distribution p(x|z) (the
likelihood) but rather by a data-generating forward pro-
cess, z, x ⇠ p(z, x) (the simulator) [31].

This framework is particularly well suited for large for-
ward models, as the one described in Sec. III and shown
in Fig. 3, where a likelihood function cannot be used ex-

plicitly for practical purposes without further simplifica-
tions. Furthermore, SBI naturally marginalizes over nui-
sance parameters through sampling, eliminating the need
for explicit parameter inference of the joint distributions
or for analytically performing parts of the marginal inte-
grals. By operating entirely with simulated samples, SBI
enables the inclusion of complex physical processes and
Bayesian reasoning elements that defy simple probabilis-
tic descriptions. This flexibility allows for data-driven
priors and nuisance spaces of arbitrary dimensionality
and distribution, such as the GRF distortions we use in
the background emission forward model (see Sec. III C).

An important advantage of SBI over traditional tech-
niques in the context of photon-count maps concerns the
treatment of the PSF: since counts are leaked across pixel
boundaries, the probability to observe a given number of

A Fermi-LAT simulator of the high-latitude sky 
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➡ Hierarchical Bayesian Model: At latitudes  well-defined astrophysical expectations in terms of 
gamma-ray emissions: extragalactic objects (blazars; Large and Small Magellanic Cloud), a few Galactic 
sources (pulsars), the diffuse Milky Way foreground and a diffuse isotropic background (IGRB). We introduce 
variations of the diffuse foreground via Gaussian random fields. 

|b | ≥ 30∘

Assessing the degree of model mis-specification via anomaly detection 
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FIG. 22. Averaged SVDD score prediction SVDD of the distance in latent space between a target vector vD
X and validation

data (blue, without (Left) and with (Right) GRFs to add variability to the MW’s di↵use gamma-ray foreground), the real
14-year LAT data (red line), simulated data using an alternative di↵use MW foreground template (orange, also cf. App. F)
and an all-sky map filled only with a Poisson draw from exponentiated Gaussian noise (black line). The displayed scores were
derived from averaging the results obtained for di↵erent target vector dimensions D and target values X as stated in the text.
The adopted range of the SVDD score is a re-normalized distance in latent space to visually enhance the proximity of the real
data to the validation dataset in relation to the noise.

1. Alternative description of the Galactic di↵use
emission

As stressed in di↵erent places, the Galactic di↵use
emission originates in high-energy charged cosmic rays
colliding with the interstellar medium, thus tracing the
structure and distribution of gas and ISRFs. The un-
certainties on these quantities will propagate into the
predictions of the expected gamma-ray emission. Phe-
nomenologically, we employed GRFs to account for these
uncertainties on small and large scales. Now, we address
whether this addition to our gamma-ray simulator allows
our inference framework to generalize to di↵erent charac-
terizations of the Galactic di↵use emission robustly. Con-
cretely, we probe how well the SBI framework can recover
the dN/dS parameters of the same point-like source map
c⇤ component of synthetic data that additionally con-
tains an unknown di↵use MW foreground model when it
is trained on simulations with and w/o GRFs.

We choose the so-called foreground model A (FGMA)
employed in [2]22 as an alternative description of Galactic
di↵use emission. The authors of [2] exploited this model
(and two similar variants) to carefully derive and ana-
lyze the IGRB and its associated statistical and system-
atic uncertainties. Therefore, FGMA is tuned towards
the high-latitude gamma-ray sky featuring hadronic (⇡0-
decay, bremsstrahlung) and leptonic (IC scattering o↵

22 The respective templates can be retrieved from the Fermi-
LAT collaboration’s public data archive: https://www-glast.
stanford.edu/pub_data/845/.

of multiple target radiation fields) gamma-ray emission
components.

It is important to note that we can expect small-scale
and large-scale di↵erences between the benchmark dif-
fuse model and FGMA. We show both models in terms
of photon counts (but before PSF convolution) in Fig. 23
as well as their relative di↵erences (b̄di↵ � b̄FGMA)/(b̄di↵ +
b̄FGMA). Small-scale variations predominantly occur be-
cause the 4FGL background model is based on updated
gas maps of atomic hydrogen (H i) adopted from the
HI4PI all-sky survey [107] while FGMA relies on out-
dated observations of the Leiden-Argentine-Bonn all-sky
survey [108] with a lower angular resolution. Large-scale
di↵erences will also be present since FGMA does not en-
compass any description of the FBs or Loop I, which are
present in the 4FGL background model via re-injected fit
residuals. These large-scale variations are easy to recog-
nize in the bottom panel of Fig. 23. The gas map di↵er-
ences have their impact mainly along the Galactic plane,
but a fraction of them also exists at high latitudes. Yet,
there are no extreme di↵erences between default and the
alternative MW foreground model (cf. also App. E 2).

Impact on the dN/dS parameter inference. To
probe the resilience of the parametric autoregressive NRE
approach against mis-modeling of the di↵use MW fore-
ground, we work on simulated target data that is always
comprised of the same point-source map realization. To
this end, we choose the TBPL dN/dS with the best-fit
parameters of the profile-likelihood 1p-PDF [17] that we
also utilized in App. D 1. In contrast, the background
map b is varied in order to generate two di↵erent target
datasets d with and without foreground mis-modeling,

Figure 1: Distribution of the averaged anomaly 
score ( ) derived from training dataset in 
comparison to the Fermi-LAT sky, a target dataset 
with an alternative diffuse Milky Way foreground, 
and Gaussian noise.

SVDD

➡ We probed the realism of our simulated gamma-ray sky in relation to the observations of the Fermi LAT via 
anomaly detection. We employed the so-called One-Class Deep Support Vector Data Description (SVDD) 
method [3]. 
Idea: Map high-dimensional data onto a predefined lower-dimensional manifold. New target data points that 
significantly deviate from this manifold are identified as anomalies.  
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Source detection in SBI language: 
Given the actual observed sky, what is 
the probability of observing a source at 
a certain position with flux  exceeding 
a certain threshold ?

S
Sth

r(Ω, Sth; x) =
p(𝕀x(S ≥ Sth) = 1,Ω |x)
p(𝕀x(S ≥ Sth) = 1,Ω)

Under the hood: 
→ classifier trained on full-sky 
     data maps 
→ labels are full-sky maps firing 
    at pixels with point sources 
→ UNET architecture as summary 
     statistic on spherical image data 
     (“DeepSphere”)

Detection map
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Hyper-parameter Source Detection dN/dS

Number of samples 200,000

(Training/Validation) ratio (80/20)%

Batch size 64 128

Optimizer AdamW [105]

Initial learning rate 7.5 ⇥ 10�4 1 ⇥ 10�4

Learning rate scheduler ReduceLROnPlateau

Learning ratio schedule decay factor 0.1

Learning ratio schedule patience 8

Learning ratio schedule criterion minimal validation loss

Maximal number of training epochs 75 100

Early stopping patience 15

Early stopping criterion minimal validation loss

Background resampling true false

TABLE IV. Summary of training hyper-parameters for each inference task to be conducted within the scope of this study.

FIG. 10. Same as Fig. 4 regarding the detection network trained on samples including background distortions via GRFs.

analog without GRFs, which indicates that the inclusion
of GRFs does not inhibit the performance of the detec-
tion network. The central panel of this figure compares
true and false positive rates on simulated sky maps sam-
pled from the full prior as a function of the chosen thresh-
old ✏ on log10 r(~x, Cth; d). As a general observation, the
inferred scatter of the multiple profiles is wider than it
was in the case without GRFs, whereas the mean of these
curves is a↵ected only mildly. This outcome is not un-
expected since the variability of the simulated gamma-
ray sky maps is increased. In particular, the background
emission may get enhanced significantly, which renders it
harder to recover some of the injected point-like sources.

In contrast, we do not expect a strong enhancement of
the Galactic di↵use emission in the actual LAT data; in
fact, the default model we are using is a fit to gamma-ray
data. Therefore, we show in the right panel of Fig. 10, the

true and false positive rates regarding simulated test data
that follows a TBPL dN/dS with the best-fit parame-
ters of the original 1p-PDF work [17]. The four back-
ground component normalizations are fixed to 1, and no
GRF distortion is applied to the Galactic di↵use emission
template. Hence, this test case corresponds to a situa-
tion where the simulated data does not contain GRFs
but the detection network is trained in their presence.
We stress, however, that the simulator with GRFs en-
compasses the possibility of AGRF = 0. We observe a
sizeable shift of the true positive curve to the left in
contrast to Fig. 4. Consequently, at a fixed threshold
✏, fewer point-like sources are correctly recovered from
the injected ground truth. Even for the sample of bright
sources (C = 30) only 60% of the sources can be retrieved
at ✏ = 0.5 while the analogous positive rate was around
80% in the scenario without GRFs. Yet, the false posi-
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FIG. 11. Same as Fig. 5 representing the source-count distribution obtained by applying the detection network trained on
samples including background distortions via GRFs on the 14-year LAT dataset. We provide the source counts for Left:
log10 r(~x, Cth;d) > 0.5 and Right: log10 r(~x, Cth;d) > 0.0.

the dim regime is also di↵erent in both approaches. The
isotropic component is, to some degree, degenerate with
this part of the dN/dS. Since the parametric approach
predicts fewer sources in this flux range, the isotropic
emission needs to be larger to fit the total gamma-ray
emission in the data.

At first glance, it may seem counter-intuitive that the
normalization of the Galactic di↵use emission is recon-
structed to A⇤

di↵ = 0.81+0.01
�0.01, that is, lower than 1. As we

pointed out in Sec. III C, this model was derived from a
fit to the Fermi -LAT sky and should hence fit the expec-
tations after rescaling it with the proper exposure for the
selected observation period. However, the fit to gamma-
ray data was iteratively performed in di↵erent partitions
of the full sky, utilizing energy-binned templates and ex-
plicitly including energy dispersion e↵ects. Since we are
considering only a single energy bin and, thus, not ac-
counting for the LAT’s energy dispersion, we expect a
renormalization of the model to match the observational
data (also cf. Sec. III A). A similar reasoning applies to
the recovered normalization constants of LMC and SMC
because all source spectra in 4FGL were obtained with
energy dispersion corrections.

Valuable information is contained in the inferred
normalization of the di↵use isotropic background,
A⇤

iso = 0.91+0.04
�0.036 (parametric approach). With

this inferred value, we can compute the total in-
tegrated flux of this background normalized to
the angular extent of the considered ROI to be
Siso = 4.16+0.19

�0.16 ⇥ 10�7 cm�2 s�1 sr�1. The total
di↵use isotropic background flux is relevant since, in
standard template-based fits, this component will be
the entire IGRB since it necessarily receives a contribu-
tion from unresolved point-like sources. However, the
unresolved-source contribution is explicitly modeled via
the source-count distribution and, hence, it should not
be part of Siso in our analysis. This expectation is met,

on one hand, because the obtained normalization A⇤
iso is

below 1, which corresponds to the best-fit IGRB model
derived by the Fermi -LAT collaboration. On the other
hand, we can compare this number to the value reported
in the 1p-PDF study, which also explicitly models the
unresolved source flux. For the case shown in Fig. 7,
the authors of [17] report an di↵use isotropic flux of
Siso = 1.4+0.3

�0.4 ⇥ 10�7 cm�2 s�1 sr�1. The value is about
a factor of three lower than our total di↵use isotropic
contribution, but this observation needs to be contextu-
alized properly. The 1p-PDF study was performed on
reprocessed Pass 7 LAT data for photon events classified
as CLEAN. The closest equivalent to this event class
regarding the Pass 8 standard is the ULTRACLEANVETO
class, whose contamination by residual non-photon
events is a factor of 5 to 6 lower than for the SOURCEVETO
event class that we selected for our study. Those residual
non-photon events are the other considerable component
of the IGRB. With this in mind, it is normal that
our total di↵use isotropic flux is larger than the one
reported in [17]. In fact, the authors of [21] provide
an update of the original 1p-PDF assessment based on
ULTRACLEANVETO Pass 8 LAT data. They report a sim-
ilar di↵use isotropic total flux as [17]. Hence, it is very
likely that the higher di↵use isotropic flux we inferred
is the result of having chosen the SOURCEVETO event class.

Details about the background parameter infer-
ence in the presence of GRFs. In addition to the four
component normalization parameters, we have an assess-
ment of the GRFs’ power spectrum slope � and ampli-
tude AGRF that characterize the background model mis-
specification between our simulator and reality. Hence,
we obtain information about what angular scales drive
the discrepancies between the Fermi di↵use background
model and the real high-latitude sky. Since GRFs with a
power-law power spectrum by construction inject power

conservative detection threshold high-efficiency detection threshold
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FIG. 11. Same as Fig. 5 representing the source-count distribution obtained by applying the detection network trained on
samples including background distortions via GRFs on the 14-year LAT dataset. We provide the source counts for Left:
log10 r(~x, Cth;d) > 0.5 and Right: log10 r(~x, Cth;d) > 0.0.

the dim regime is also di↵erent in both approaches. The
isotropic component is, to some degree, degenerate with
this part of the dN/dS. Since the parametric approach
predicts fewer sources in this flux range, the isotropic
emission needs to be larger to fit the total gamma-ray
emission in the data.

At first glance, it may seem counter-intuitive that the
normalization of the Galactic di↵use emission is recon-
structed to A⇤

di↵ = 0.81+0.01
�0.01, that is, lower than 1. As we

pointed out in Sec. III C, this model was derived from a
fit to the Fermi -LAT sky and should hence fit the expec-
tations after rescaling it with the proper exposure for the
selected observation period. However, the fit to gamma-
ray data was iteratively performed in di↵erent partitions
of the full sky, utilizing energy-binned templates and ex-
plicitly including energy dispersion e↵ects. Since we are
considering only a single energy bin and, thus, not ac-
counting for the LAT’s energy dispersion, we expect a
renormalization of the model to match the observational
data (also cf. Sec. III A). A similar reasoning applies to
the recovered normalization constants of LMC and SMC
because all source spectra in 4FGL were obtained with
energy dispersion corrections.

Valuable information is contained in the inferred
normalization of the di↵use isotropic background,
A⇤

iso = 0.91+0.04
�0.036 (parametric approach). With

this inferred value, we can compute the total in-
tegrated flux of this background normalized to
the angular extent of the considered ROI to be
Siso = 4.16+0.19

�0.16 ⇥ 10�7 cm�2 s�1 sr�1. The total
di↵use isotropic background flux is relevant since, in
standard template-based fits, this component will be
the entire IGRB since it necessarily receives a contribu-
tion from unresolved point-like sources. However, the
unresolved-source contribution is explicitly modeled via
the source-count distribution and, hence, it should not
be part of Siso in our analysis. This expectation is met,

on one hand, because the obtained normalization A⇤
iso is

below 1, which corresponds to the best-fit IGRB model
derived by the Fermi -LAT collaboration. On the other
hand, we can compare this number to the value reported
in the 1p-PDF study, which also explicitly models the
unresolved source flux. For the case shown in Fig. 7,
the authors of [17] report an di↵use isotropic flux of
Siso = 1.4+0.3

�0.4 ⇥ 10�7 cm�2 s�1 sr�1. The value is about
a factor of three lower than our total di↵use isotropic
contribution, but this observation needs to be contextu-
alized properly. The 1p-PDF study was performed on
reprocessed Pass 7 LAT data for photon events classified
as CLEAN. The closest equivalent to this event class
regarding the Pass 8 standard is the ULTRACLEANVETO
class, whose contamination by residual non-photon
events is a factor of 5 to 6 lower than for the SOURCEVETO
event class that we selected for our study. Those residual
non-photon events are the other considerable component
of the IGRB. With this in mind, it is normal that
our total di↵use isotropic flux is larger than the one
reported in [17]. In fact, the authors of [21] provide
an update of the original 1p-PDF assessment based on
ULTRACLEANVETO Pass 8 LAT data. They report a sim-
ilar di↵use isotropic total flux as [17]. Hence, it is very
likely that the higher di↵use isotropic flux we inferred
is the result of having chosen the SOURCEVETO event class.

Details about the background parameter infer-
ence in the presence of GRFs. In addition to the four
component normalization parameters, we have an assess-
ment of the GRFs’ power spectrum slope � and ampli-
tude AGRF that characterize the background model mis-
specification between our simulator and reality. Hence,
we obtain information about what angular scales drive
the discrepancies between the Fermi di↵use background
model and the real high-latitude sky. Since GRFs with a
power-law power spectrum by construction inject power
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FIG. 8. Same as Fig. 7 derived via training on simulated high-latitude gamma-ray maps featuring GRF-modulated MW
foreground emission. The recovered 4FGL-DR4 point-like sources were derived based on the detection network trained on
simulations with GRFs and a detection threshold of log10 r(~x, Cth;d) > 0 (cf. Fig. 11 in App. C 1). We note that the di↵erence
between the non-parametric dN/dS profiles with and without GRFs is very small, hinting at the robustness of this inference
result.

• We were able to infer loosely constrained posterior
distributions for the GRF parameters realized in the
real data. The best-fit values of power spectrum slope
and normalization parameter hint at mis-modeling of
the Galactic di↵use emission component present at
scales smaller than the FBs or Loop I. We note that
on simulated data, the GRF parameters can be recon-
structed rather precisely. To emphasize this fact, we
point to Fig. 25 of App. F 1. There, we show the pos-
terior profile of the resulting GRF parameters for a
synthetically generated mis-modeling of the Galactic
di↵use emission by using an alternative background
template missing the FBs and Loop I. Even though
the created mis-modeling is not a GRF by construc-
tion, the posteriors are sharply defined.

VI. DISCUSSION

We want to highlight and elaborate on several points
regarding the inference results from the gamma-ray sky
as seen by the Fermi LAT.

Compatibility and cross-talk between point-
source detection and inference networks. We em-
ployed two distinct ways to derive the source-count dis-
tribution of the Fermi -LAT high-latitude sky: (i) via
an SBI point-source detection approach yielding a cat-
alog of resolved discrete gamma-ray sources tracing the
dN/dS until its intrinsic detection threshold and conse-
quent loss of detection e�ciency and, (ii), an SBI in-

ference approach reconstructing the dN/dS profile di-
rectly from the target dataset. We demonstrated in
Figs. 7 and 8 that both methods yield consistent char-
acterizations of the high-latitude source-count distribu-
tion. More quantitatively, our inferred median dN/dS
corresponds to 799 expected sources above a flux of
S > 3 ⇥ 10�10 cm�2 s�1 in our ROI (for the parametric
dN/dS), which excellently matches the 800 4FGL sources
in this flux range (>98% of which, recall, have been de-
tected by our detection network). At this point, we em-
phasize that the source-detection approach o↵ers the ad-
vantage of resolving concrete sources, or more precisely,
of inferring the probability that a certain pixel of the tar-
get dataset contains a point-like source. While we were
able to associate a fraction of these high-probability pix-
els with 4FGL-DR4 sources, others could not be matched.
Yet, among these additional firing pixels (red histograms
in Figs. 5 and 11) could be potential point-like sources
not yet listed in the Fermi -LAT collaboration’s catalog.
It would require dedicated gamma-ray analyses of each
possible source candidate to confirm them as genuine dis-
crete point-like gamma-ray emitters, which is beyond the
scope of this work.

We observe the mutual consistency of both methods,
which underlines the robustness and aptness of our SBI
framework to reconstruct the high-latitude source-count
distribution. We stress, there is no cross-talk between
the two methods. In particular, the inference networks
do not receive information from the output of the
point-source detection network, i.e., the resolved part of
the respective gamma-ray sky realization.

https://github.com/deepsphere/deepsphere-pytorch

