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Solar Dipole: a known anisotropy
due to Earth's revolution around the sun

apparent energy-independent ~10-4 dipole anisotropy due
to relative motion of solar system through ISM

motion of solar system around galactic center ~ 29 km/s
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<U> =29.8 = 0.5 km/s

apparent energy-independent ~10-4 dipole anisotropy due
to relative motion of solar system through ISM

motion of solar system around galactic center ~ 29 km/s
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Left: the sidereal time with respect to solar time. As the Earth
revolves around the Sun, the sidereal time zero stays fixed in
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» Amplitude is maximum towards equator and
zero at poles
» 1d measurement corresponds to the average
amplitude over declination bands |
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Extrapolation of 1D Amplitude

1. Plot amplitude of 1d fit in RA. as a function of declination

2. Fit cosine of declination and extrapolate to horizon |- Low Statistics

10% Burn Sample (All Energies)
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Equatorial Projection Bias
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Dipole Fit

5]7, U

Solar Dipole is given by T = —
C

(7 +2) cos(&i)
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Where f i Is the opening angle between velocity direction and CF

arrival direction (for pixel i).

Equatorial

Since the m=0 component is missing, this reduces to

5[2 U

- = Z(y + 2) sin 6; cos(¢pg — ¢;)

or, in equatorial coordinates («,0) coordinates

0l;
T — %(fy —+ 2) COS 57/ COS(Oé() — ai)
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Amplitude and Phase vs. Energy

Top: solar dipole amplitudes calculated
from 2D fit in the solar reference frame
compared to a single power-law hypothesis
of Y= —2.6,

Bottom: phase offset from the direction of
the velocity vector. Leakage from the
sidereal reference can produce a dipole
that interferes constructively or destructively
with the solar dipole, changing both the
amplitude and direction.
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Amplitude and Phase vs. Energy

Top: solar dipole amplitudes calculated
from 2D fit in the solar reference frame
compared to a single power-law hypothesis

of ¥ = —2.0 including systematic
uncertainties.

Bottom: phase offset from the direction of
the velocity vector. Leakage from the
sidereal reference can produce a dipole
that interferes constructively or destructively
with the solar dipole, changing both the
amplitude and direction.
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Bias from Yearly modulation of solar anisotropy

Because the C-G dipole amplitude is
~3x smaller than the sidereal dipole,
the anti-sidereal and spurious sidereal
sidebands are comparably smaller.

anti-sidereal distribution is
oroduced by a yearly modulation of
the solar-dipole amplitude and it

deforms the sidereal distribution
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Figure 2: Left: the sidereal time with respect to solar time. Time starts at 12:00:00 on the local meridian
with the Sun at the same location as a distant star. Then, as the Earth revolves around the Sun, the sidereal
time zero point stays fixed in the celestial sky while the solar time’s reference point moves away.
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Solar Dipole Modulation (Time Dependence)

Orbaital speed of Earth vs Time 1s nearly sinusoidal
but there 1s an asymmetry due to the eccentricity of
the orbit. The 28-day frequencies observed are caused
by variations from the Earth-Moon system.
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Solar Dipole Modulation (Time Dependence)

IcCECUBE

In addition to the yearly modulation due to the
orbital speed, the Earth tilt relative to the
velocity vector peaks during the equinoxes and
oscillates between n = £ 23.5° by

plane of
ecliptic

1.00 -
cos |n cos (wt — ¢)]
772 0.98 -
~ 1 5 cos® (wt — ¢)
o _ 0.96 -
So the total expected yearly variation is
772 0.94 -
~ Acos (wt — ¢1) 5 cos” (wt — ¢o) + B |
: : : C . [/ — 1-Tcos? (wt—¢) |
Where B is the mean amplitude and A is the variation 0.92 - \_/ cos[ncos (we— )] \J
due to the orbital speed (~10%) , , , , , , , ,
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Solar Dipole Modulation (Time Dependence)

Dalily solar amplitude vs. time. We get the
best fit for the first and second harmonic
representing the variation in orbital speed
and tilt shadow, respectively.

The function is a marginally better fit than
the null hypothesis but the first order term
has the opposite phase as the prediction.
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Time series fit

IcCECUBE

Instead of producing maps in the Solar reference system, we fit daily sidereal maps by pixel as a function of

(time, Ra, Dec) and subtract the mean distribution.

Advantage: daily maps insensitive to gaps in data taking.

The reference map still sensitive to gaps but bias due to leakage is smaller.

10
We fit :
f(A,d,a,t,¢) = Acos(d) cos(a — 27t /365 + @)
over the time series of pixels for all daily maps with A L
and ¢ as free parameters. _
S
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---- fit: p— pval =0.30, A + Bcos(wt — ¢) — Ccos? (wt — @)
prediction: p — val =0.29, A[l + 92—2cos2 (wt — ¢)]
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Time series fit
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Figure: Projection of Compton-
Getting amplitudes vs Energy onto
the equatorial plane. Missing North-
South dipole component
corresponding to =1, m=0 term in

spherical harmonics.
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Time series fit

6.54 ¢ uncorrected

| corrected for tilt
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Figure: Compton-Getting amplitudes
vs Energy Corrected for the tilt of
Earth axis with respect to the ecliptic
1/c0s(23.5°).
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Time series fit

Spectral Index - y
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Left: Spectral index y vs Energy for 7

anisotropy bins, calculated from the
dipole amplitude according to

7:516 2
v

Errors are statistical corresponding the
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Systematic check:

1st six years compared to 2nd six years.

IcCECUBE

5.01 & full set

45{ * Z 2011-2016 Figure: Dipole measurements differ between first 6
> ¥ b:2017-2022 years (2011-2016) vs. second 6 years
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— 1 uncertainties.
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Time series fit

Spectral Index y
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Systematic uncertainties:
calculated from anti-sidereal dipole
amplitude.

Systematic effects at 100 TeV are
challenging due to rapidly changing
transition (phase flip) and small
amplitude of sidereal dipole relative
to C-G dipole amplitude.
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IcCECUBE

Anti-sidereal Correction Phase

Farley & Storey, Proc. Phys. Soc., 67, 996 1954
SEASONAL MODULATION SOLAR VARIATION

U Nagashima, et al., Nuovo 907 Cimento C, 6, 550, 1983
R(t) = 14+ [A+ 2B cos2n(t — ¢2)| cos2n(Nt — ¢1)
+ C cos2m {(N + 1)t — ¢3},
N e
TRUE SIDEREAL VARIATION \
SOLAR
— N
R(t) = 1+ A cos2n(Nt — ¢1)
SPURIOUS SIDEREAL TRUE SIDEREAL
¢1 vhase of solar dipole + B' cos2m {(N + 1)t — (¢1 + ¢2)} + C cos2mw {(N + 1)t — ¢3}
+ B cos2m {(N — 1)t — (¢1 — ¢2)}
—— e
¢1 -+ ¢2 phase of anti-sidereal dipole EREUDO=SLDEIEAL
o = ¢1 — ¢2 phase of sidereal correction term
Systematic uncertainty (time series): 0l,. — 01, cos«

Super-Kamiokande CR Anisotropy Paper arxiv:0508468 20



Spectral Index y

Time series fit

(Systematic Uncertainties)
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Systematic uncertainties:

Amplitude is reduced by factor cos(a).
Direction of bias is determined from angle

a = Q1 — P2

where
D1

IS the phase of solar dipole, and
¢1 + P2

Is the phase of anti-sidereal dipole.
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Hypotheses

HAWC measurements on the total energy spectrum of
cosmic rays

J. A. Morales-Soto“* and J. C. Arteaga-Velazquez“ for the HAWC collaboration

4 Instituto de Fisica y Matemadticas,
Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico

E-mail: jorge.morales@umich.mx, juan.arteaga@umich.mx
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Spectral Index y

Time Series f|t (Hypothesis Test)

Systematic uncertainties: calculated from anti-
sidereal dipole amplitude and phase.

45| — HAWC
| — y=25 Spectral indices are compared to:
—-— |ceCube (MC)
4.01 - GsF |
syst. 1. Broken power-law fit from HAWC
3.5 syst. inc. phase I PoS(ICRC2023)364.
3.0 | [ 2. HAWC fit convolved with IceCube response
2.5 Qi___-_:‘_':'_':f’:'_'f_'f_'f_'f_'g_.____'—'_'—':F:_'_T_’_—_‘_—_‘_—_:::_—_:_—_'_—_'_—-'-—-':-‘——-'-—-'-—-'-—-'-‘-'-—-

3. GlobalSplineFit2024 convolved with

lceCube response.

2.0-
1.5{ lceCube Preliminary 4. Single power-law fit.
40 42 44 46 48 50 52 54 56 5.8 | | | |
0910 [E/GeV] 5. Broken power-law fit (described by sigmoid)
o (e-m)
T + ec(zo—x) @ = l0gyo
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Spectral Index y

Time series fit

(Hypothesis Test)
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Systematic uncertainties: calculated from
anti-sidereal dipole amplitude and phase.

- Comparison to four different hypotheses.

» Data are consistent with single and broken

power law scenarios due to large

uncertainties

Model
HAWC
IBMC
GSF
SPL y =2.54 +0.03

Fit
N/A
N/A

N/A

y1 =253 +0.03,y, = 2.65 +0.15,

S log,, (Eo/GeV) =4.7+0.9
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If

p-val
0.55
0.91
0.73

0.8

0.61
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Conclusions

Measured the solar dipole amplitude for different energy bins with 12 years of cosmic-ray muon data.
Derived the corresponding spectral index from Compton-Getting formula.
Data are consistent with both single and broken power law scenarios due to large uncertainties.

Best fit for SPL is y=2.54+0.03, and BPL y1=2.53+0.03, y2=2.65+0.15, with a break at
log10(Eo/GeV)=4.70+0.87.

Improved statistics to previous measurement from Tibet of y=2.99+0.54 at 10 TeV (M. Amenomori, et al.,
2008. https://doi.org/10.1016/j.nuclphysbps.2007.11.044).

Uncertainties on amplitude and phase of anti-sidereal distribution are smaller than statistical
uncertainties for C—QG.

Not sensitive to variation of Earth's orbital speed due to eccentricity.

The presenter acknowledges
support from NSF Grant
#2209483

05/11/2025 Juan Carlos Diaz Vélez - University of Wisconsin-Madison
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IcCECUBE

The IceCube Observatory
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Method for measuring CR anisotropy

IcCECUBE

| ...
-‘ Build a binned data map using the ——

equatorial coordinates of the events

13282406

2 Construct a “reference” map by integrating —————

acceptance over 24 hours.

262.925

N\, — oy
Maximum LLH method (M. Ahlers, et al. 2016): L(n|I, N, A) = H (i) e .

) nTi'
| .
8 Correlate pixels to increase sensitivity ——————
to different angular scales ~m——
Relative Intensity - i
$T(a.6); — N(a,d); — (N)(a,6); 4 Calculate relative dn‘fe[rencles lbletween e
& 0)i = (N)(a,0); data and reference with significance.
s lta, N N, 1/2 Calculate statistical significance for each pixel | M‘
si = V24 N;log - (Ni+No> + N, log (1+a)(Ni+No) 5 - G

uuuuuuuuuu
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Arthur H. Compton and Ivan A. Getting

o
co m pton - Gettl ng EffeCt Phys. Rev. 47,817 — June 1935 doi:10.1103/PhysRev.47.817.

MIRIAM A. FORMAN, Planet. Space Sci. 1970, Vol. 18, pp. 25 to 31.

Any particle distribution function 1n phase space 1s
invariant under Lorentz transformation.

(") = f(p)

The observer’s motion speed 1s v « ¢ (e.g., Earth’s orbital speed 1s about 30 km/sec, much smaller
than the speed of light) so

/ v—1 k Ay L
And since cosmic-ray particles are ultra-relativistic, E = pc p/ ~ p P vV

29
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MIRIAM A. FORMAN, Planet. Space Sci. 1970, Vol. 18, pp. 25 to 31.

Compton-Getting Effect

By Taylor expansion the Lorentz invariance J '(P") = f(P) becomes

(p) ~ Va0 LN L e 000 oy Ofo

PO = folo) = o vIp 45 () | v 57+ (1= (o v)) T
—/_/ —/—/
first order term second order term

where f'(P) = fo(P) is the 1sotropic cosmic-ray particle distribution function in the un-primed reference system.
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First Order C-G

The first-order term

can be rewritten as

f'(p’)

fo(p)

MIRIAM A. FORMAN, Planet. Space Sci. 1970, Vol. 18, pp. 25 to 31.

f'(p') ~ fo(p) — ~(p-v)p

v p 0Jfo

1 — —cosft

& Jo 0]?_

fo(P)

0Jo

1 — Bcos@
C

81I1f()-

Olnp
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MIRIAM A. FORMAN, Planet. Space Sci. 1970, Vol. 18, pp. 25 to 31.

First Order C-G

IcCECUBE

[ ]
..or in terms of particle intensity DR Olnly
I'~1y|1— Ccos@ dlnp
typically expressed as ~ dN _
I(F) = x 77
dFE
Or In momentum L dN (2
I(p) = s X P (2+7)

Relative intensity:
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Horizontal Multi-pole Fit

The dipole component is given by the Y, terms

1 .
Y (o, 8) = 5\/ % cosde %,
1
Y (a, 6) = 5\/%81115,
1 :
Yi(a,6) = —5\/ % cos e’

So, for a dipole oriented along the x-y plane,

F(a,0;) = a1,-1Yl_1 + 01,1Y11 = Aj cos (9;) cos(a; — ¢1)

We fit parameters: A;, ¢; over the pixels in the FoV

a1
u.u-n'-'-‘h'::::::-:. ‘0"-" '..ll'-ul":.-v-ul'-lolil-lulv'-':‘ﬁ'l-!'.ll::--llllll:-.l': . -.::::‘-hl..:n:.:-.:::l-l: ........
360° o T oerE | O . 0

T S uu-:--un-u.......;..----unnu--:--(- SR PET R REEPPEPE
serssrssssassaseseny R e S e R L L LT LEEYY

........ ",

......'.‘.'.».,._:: ........... R eee e en 5aeeeecaceaniancansensenis neruee RN s ..::..,.f........'...,..:: .......

i, e Equatorial
-0.690388 0.690388

relative Intensity
dy 1

Equatorial

-0.614137 . . 614137
0-0141 relative Intensity 061413 33



Systematic Biases

L ]
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extended-sidereal distribution is produced by a yearly modulation of
the sidereal-dipole amplitude and it deforms the solar distribution. The

extended-sidereal amplitude is ~ 3x larger than the anti-sidereal

amplitude.

IcCECUBE

J.C. Diaz-Vélez et al. DOI: https://doi.org/10.22323/1.395.0085 PR
sidereal
dis
solar
extended-sidereal
\
| 12:00:00 | 11:56:04 | 12:00:00 anti-sidereal
sidereal day =—23h 56' 04" =———p—3'56"=» H
ola 0.9973 1 1.0027 1.0054 (orbit/day)

Mutual interference between modulations in solar and
sidereal frames produces frequency side-bands around
both peaks. The other side-bands overlap with sidereal

and solar frequencies, producing a deformation of the
CRA.
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Spectral Index y

What is up with the bin at 100 TeV?

"his is where the dipole flip happens and it is
ikely very sensitive small variations in energy
that may produce an unstable signal.
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