

GOBIERNO
DE ESPAÑA

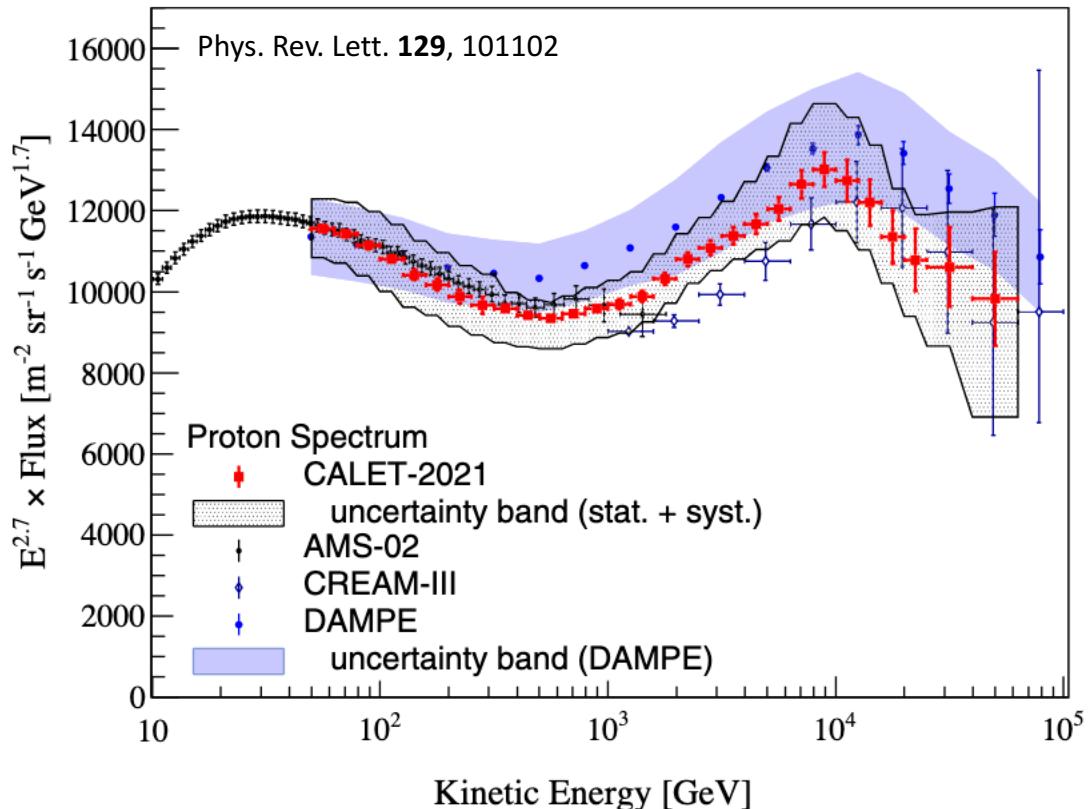
MINISTERIO
DE CIENCIA, INNOVACIÓN
Y UNIVERSIDADES

Financiado por
la Unión Europea
NextGenerationEU

Measurement of the Proton Spectrum with the MAGIC Telescopes

M. Molero,
P. Temnikov, M. Makariev, G. Maneva, R. Mirzoyan

for the MAGIC Collaboration


05-10-2025

Introduction

Recent measurements of the proton spectrum from dedicated cosmic ray experiments have found structures at about 10 TeV

The purpose of this work (firstly presented at ICRC 2021) is to show that the background data in gamma-ray observations with IACTs can be used for cosmic ray studies

MAGIC Telescopes

- Two 17 m diameter f/1 Cherenkov Telescopes at the Roque de los Muchachos Observatory
- Energy range: > 20 GeV
- Field of view: 3.5 deg, 1039 PMT-based pixels
- Primarily designed for VHE gamma-ray detection
- Cosmic rays constitute the main source of background for gamma-ray observations. However, with dedicated analysis, these species can be studied.

Performance details: Aleksić et al., AP (2016) 72, 76-94

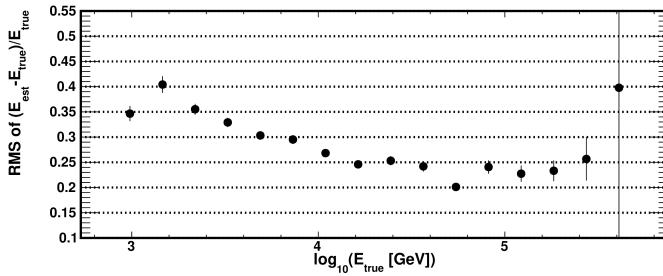
Data and MC simulations

- Data:
 - Zenith Range: 5-35°
 - Good atmospheric conditions
 - Total effective exposure time amounts to 434 hours
- MC:
 - Similar zenith conditions
 - Energy range from 500 GeV to 2 PeV
 - Several species were produced for this analysis

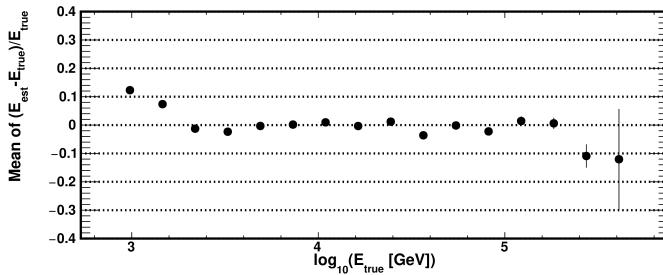
MC simulations

Particle	Z	Gen. Events [$\times 10^7$]
Proton	1	27.5
Helium	2	15.4
Carbon	6	9.9
Oxygen	8	5.6
Magnesium	12	2.8
Silicon	14	2.1
Iron	26	22.6

Energy Reconstruction



We use the supervised feedforward neural networks with back propagation method for the energy regressor and event classifier


Architecture Energy Regressor

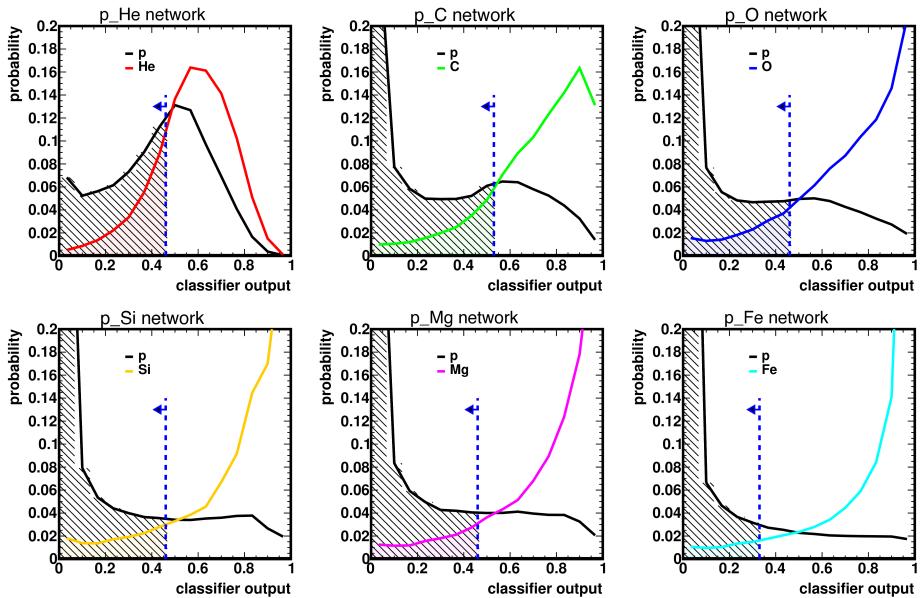
Layers	1 input	3 hidden	1 output
Nodes	21	16, 8, 4	1

Energy Resolution

Energy Bias

Proton Classifier

- Create MC Proton classifier with every of the other six elements: p-He, p-C, p-O, p-Mg, p-Si and p-Fe \Rightarrow We get 6 neural networks
- This approach provides better rejection power than a single combined model


Architecture Classifier				
Layers	1 input	4 hidden	1 output	
Nodes	36	28, 18, 10, 5	1	

- Every MC is run through each neural network
- Data is run through each neural network

Proton Classifier

Define selection region for proton-like events independently for each neural network

- The classifiers provide the probabilities $Prob_i(p_{like_i}|j) = p_{ij}$ of given a nucleus (j= p, He, C, O, Mg, Si and Fe) to be selected as proton-like event for each classifier (i)
- Obtain the proton-like probability ϵ_i of an event in real data being classified as proton-like by the j-th classifier

System of linear equations

With the p_{ij} and ϵ_i probabilities we can define a system of linear equations

$$\sum_{j=1}^7 p_{ij} N_j = \epsilon_i N \quad ; \quad i = (1,6)$$

$$\sum_{j=1}^7 N_j = N$$

N_j unknown number of type j particle

N total number of selected events in the data

This equation can be written in a matrix form $A\vec{x} = \vec{b}$, with A and \vec{b} known quantities, and \vec{x} the unknowns

$$A = \begin{pmatrix} p_{11} & \cdots & p_{17} \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \quad \vec{x} = \begin{pmatrix} N_1 \\ \vdots \\ N_7 \end{pmatrix} \quad \vec{b} = \begin{pmatrix} \epsilon_1 N \\ \vdots \\ \epsilon_7 N \end{pmatrix}$$

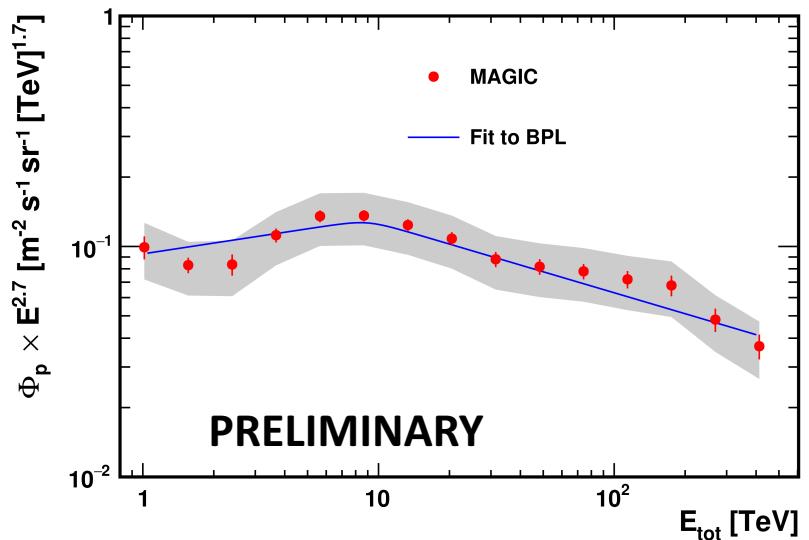
We solve the system with MINUIT to obtain N_1

Flux Computation

When we solve the system we obtain N_1 and then we can compute the flux as

$$\Phi(E, \cos(\theta), Z) = \frac{N_1(E, \cos(\theta), Z)}{A_{eff}(E, \cos(\theta), Z) T \Delta E}$$

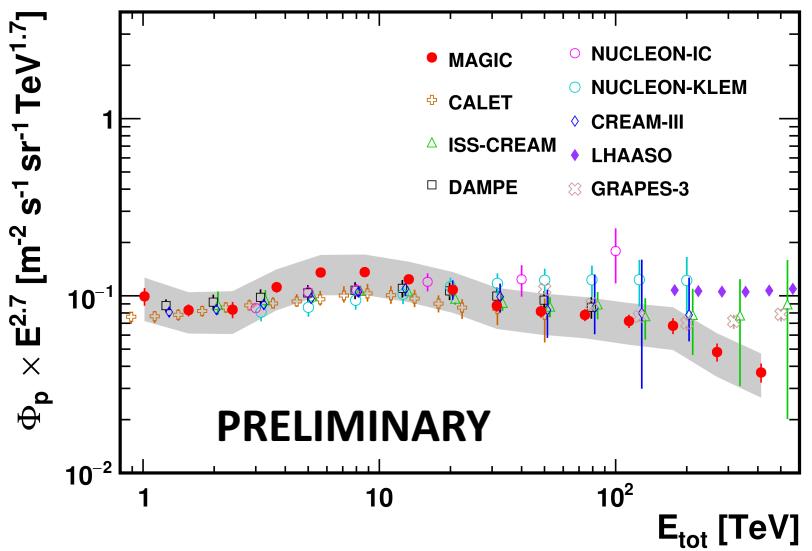
$A_{eff}(E, \cos(\theta), Z)$: effective acceptance


T : Exposure Time

ΔE : Energy bin

Proton Flux: Spectral Behavior

The MAGIC proton flux from 0.8 to 500 TeV is presented



The flux is fitted with a broken power law (BPL) and the data suggest a spectrum break at ~ 9 TeV

Proton Flux: Comparison

The MAGIC data is compared with the measurements from other experiments

Conclusions

- The methodology to compute the proton spectrum with the MAGIC telescopes from the cosmic-ray background data was presented
- Several MC species were produced for this analysis: p, He, C, O, Mg, Si and Fe
- The analysis method is based on neural networks to obtain the number of proton events
- The MAGIC proton spectrum from 0.8 to 500 TeV was presented
- Results are compatible with other experiments and suggest an energy break around ~ 9 TeV
- These methodology could be used to compute other nuclei fluxes with the MAGIC telescopes