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if residual accretion or jet formation occurs.

e We observed two of the most interesting events of O4.

MAGIC: Two Imaging Atmospheric Cherenkov Telescopes
(IACTs). Energy threshold: ~50 GeV (FoV: 3.5 deg).

LST-1: The first Large-Sized Telescope (23m) of the CTAO.
Energy threshold: ~20 GeV (FoV: 4.3 deg).

e Joint setup, both located at the Observatorio
del Roque de los Muchachos, La Palma, Spain.
With offline stereo event coincidence. The Development of Ground-Based Gamma-Ray Astronomy (R. Mirzoyan)



https://dcc.ligo.org

The BBH Merger Candidates

e Both classified as Binary Black Holes (BBHs)
$240615dg [GCN, GraceDB]

e Best localized GW up to now (90% area is ~5 deg?).
o  Could be covered by one MAGIC / LST pointing (No tiling).

o No detection in the EM by any other instrument.

®  Estimated chirp mass of the events: M ~ 140 Me.

$241125n [GCN, GraceDB]

e Swift/GUANO potential counterpart (T-To=115).

©  Sub-threshold detection.
o  Spatial coincidence rate 1 /12 yrs.
©  No known redshift.
e No other detection for other instruments. Many observed it.

e Estimated chirp mass: M ~ 115 Me.
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https://gcn.nasa.gov/circulars/36669
https://gracedb.ligo.org/superevents/S240615dg/
https://gcn.nasa.gov/circulars/38305
https://gracedb.ligo.org/superevents/S241125n/
https://gcn.nasa.gov/circulars/38308

Observation conditions
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Correcting for adverse atmospheric =i
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conditions in IACT observations

e ForS$241125n

Transmission

® Possible methods:

o Height-dependent corrections A&A, 685, A165 (2024)
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o Dedicated MCs, specific MC Altkideng i
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https://www.aanda.org/articles/aa/full_html/2024/05/aa49304-24/aa49304-24.html

Global Upper Limits from GW-Weighted analysis

We

Limits (ULs) but also a single global significance and UL for
gamma emission spatially coincident with the GW source.

DEC [deg]

We modify the standard Test Statistics to add
the GW information using LVK Sky-Map.
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https://arxiv.org/pdf/1908.07706

We produce simulations for same observation
conditions.

e First under the null hypothesis (No source).

e We compare /data with the /ABKG distribution,
and then we compute the significance based on

the p-value.

We can repeat the simulations but injecting a source
with different amplitudes in a position following the
LVK Sky-Map PDF.

0.60 TeV < E < 20.00 TeV

p-value=0.71
significance=-0.54 0

1071 3

After some value, the distribution deviates from BKG
distribution.

®  Flux UL: flux required such that 95% of trials
return /Af > Adata.

Conservative approach. If data comes from negative
fluctuations we compare /A with the BKG simulation.

e Sensitivity: flux required such that 95% of trials
return /Af > /ABKG-median.
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Results: $240615dg

Two different analysis are performed:

e Low Energy: Taking advantage of

mono-LST lower energy threshold.

(0.15 TeV < E < 0.6 TeV).

e High Energy: using stereo LST+MAGIC.
(E > 0.6 TeV).

No significance hot spots are seen.

Flux Sky-Map for both analysis and estimation of
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E2N [TeV s~ cm™2]

Results: S241125n

We are covering only the candidate counterpart region. We perform point-like analysis.

Detection significance: -0.120

Spectral Energy Distribution (SED).
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e Light Curve (LC).
o Variation due to statistical
fluctuations.
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Theoretical
Interpretations

Inside an AGN disk, BBHs can
accrete gas from the dense environment.

breakout emission

e Super-Eddington accretion mechanism for emission
inside the disk.
e Post-merger jet scenario (Blandford—Znajek jet). Strong

dependence on R, (radial distance from SMBH).

We can then, compute upper limits on the Super-Eddington
efficiency parameter. Orders of magnitude above plausible
values detectable by IACTs.

For S241125n, observed Swift-BAT delay (= 6 s rest-frame)
and short duration imply a merger deep inside the disk
(R <0.01 pc), then highly absorbed at TeV energies.

VHE fluxes are orders of magnitude below MAGIC + LST-1.

VF, [erg cm™2 s71]

Tagawa et al. (2023)
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AGN Counterpart search for BBH merger events

Both events are likely to have large Primary Mass > 100 Mo.

® Then the scenario of the merger to be in an AGN disk becomes more relevant.
e Then we will try to find AGN candidates looking into different catalogs.

e Searching for continuum, UV and X-ray emission.

Lo

N — Jet (or failed jet)

= e L rom— Modified from:
© .
; ()[) . ® Primordial BHs in D WIlkInS
‘;_ Colnmon Envelope Stable mass clusters L
o transfer x . > . X-ray Emission
é o e ® o O 5 “
== : 24 °o° o < X-rays Reflected
8 10 ® ® ® Globular star cluster W j off Disk
e Young star cluster P
E Chemically In gas disk of Active o
oo Homogeneous Nuclear star cluster Galactic Nuclei
| -1y ——
210 SOL 0 e -
I. ‘
2o'Qo $ o il
Corona Accretion Disk
‘ (infalling material)
10~ . .
135 10 30 50 100 Black Hole Continuum emission
Primary Mass [MO] 11

Credit: Lieke van Son



Different catalogs to check

Gaia DR3
Glade+
DESI-DR1 AGN
GALLEX UV

o XXM-Newton 4XMM-DR10s
e ChandraCSC2.1
e Swift XRT

Cross-matching different AGN catalogs with the LVK sky-map

First we look for the 2D coincidence.
Then if the catalog contains redshift we use all 3D.
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For $240615dg we found several AGNs in the volume. Still
crosscheck between the different catalogs is being done.

For $241125n the search region is much smaller. Still the crossmatch
is ongoing.

48° 4

»
o

Declination

42°

* redshift information included

.COsSMO

HUB &

=¥— 3LAC-DR3 AGN
—»— Swift 2SXPS
=¥~ GAIA DR3
[] LST Telescope pointing
MAGIC Telescope pointing
/\ —9¢ Location Selected (Bayestar)
-3¢ Astro-COLIBRI Location (Bilby)

//7\“\\

L%\}b Selected (Bay s&a r)

.
oh4s5™

30™m 15"
Right Ascension

12



Conclusion and future prospects

® Analysis & Methodology:

o  Global upper-limit framework integrating GW skymap probability.

o Implemented tailored MC corrections enabling analysis under suboptimal atmospheric conditions.

® Results:
o  First joint MAGIC+LST-1 stereoscopic follow-up of GW BBH events.
o No significant VHE gamma-ray emission detected from either BBH.
® Physical Interpretation:
o Non-detections consistent with current Super-Eddington accretion and BZ jet models

(Tagawa et al. 2023).

o No compelling evidence of AGN association, but compatible with merger occurring in AGN disk.
e Outlook:

o Analysis pipeline can be applied as well in poorly localised GRBs.

o  The global upper-limit methodology can be applied to observations in other wavelengths.

13


https://iopscience.iop.org/article/10.3847/1538-4357/acc4bb/pdf
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Instrumentation details

MAGIC: Two 17 m Imaging Atmospheric Cherenkov Telescopes

(IACTs) located at the Observatorio del Roque de los
Muchachos, La Palma, Spain.

Energy threshold: ~50 GeV. FoV: 3.5 deg.

LST-1: The first Large-Sized Telescope (23m)
of the CTAO.

Energy threshold: ~20 GeV. FoV: 4.3 deg.

Joint setup with offline stereo event coincidence
o Larger collection area.
o Better background rejection.
o  Sensitivity ~30% better than MAGIC.
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About the False Alarm Rate of Swift-BAT detection

"The GRB candidate False Alarm Rate (FAR) is 3.74E-4 Hz. The joint GW-GRB
FAR, combining the spatial and temporal information of both signals and correcting
for trials, is 2.581E-9 Hz, or 1 every 12 years. "

® “Correcting for trials” refers to trials with different pipelines.
e No other trials are considered:

o Taking into account the Swift time of observation.

o Coincidence with LVK observation time.

o Field of view of instrument and coverage over time.
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Analysis parameters

lstchain:v0.10.20, magic—-cta-pipe:Vv0.5.4, gammapy: 1.1

- FoV bins [0, 2.5] deg 5 bins.
- Energy bins: 4 bins per decade.
- Intensity cut (standard) intensity > 50 p.e.

Standard GammaDiffuse MCs.
Missing definitive stereo MCs (using before period).
Low Energy: gh-dyn cut 50% (background dominated).

o O O O

High Energy: gh-dyn cut 70% (standard cut).
® S5241125n:

Full enclosure MCs + point-like.

Dedicated MCs (50% splitting RF train + IRF).
Run-wise NSB settings.

o O O O

Energy range: gh-dyn cut 90% (to gain more statistics)

Background modelisation

- FoV bins [0, 2.5] deg 5 bins
- Ring BKG [0.35 to 0.55] deg

Software used:

® Analysis: pybkgmodel

® Crosscheck: BAccMod

No exclusion masks (no HE

sources nearby)

e 3D model

e FoV + Ring BKG

17
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Reconstructed energy [TeV]

Observation conditions and energy threshold selection

Strong time evolution due to different factors:

® Zenith going from ~60 deg to ~40 deg
® NSB decreasing over time
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Using LST (mono) and LST+MAGIC (stereo) data
together, so the selected threshold need to be
common for both instruments.
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Correlation between LIDAR and Cherenkov Transparency
We can see a correlation of the LY and the LIDAR transmission @ 9km.

Following this correlation we can state:

e In first 30 min of datataking (LST only) LY is constant. And stays the same for the next 20 min
of joint datataking.
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Comparison of standard MCs and atmospheric accurate
simulations

10—10 .
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Theoretical Interpretations:
Super-Eddington accretion scenario

Inside an AGN disk, BBHs can accrete gas from the dense,
viscous environment. (If the accretion rate exceeds the
Eddington limit)

b AGN disk

breakout emission

e The escaping radiation could, in principle, extend to high

energies via inverse Compton scattering.
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® Using MAGIC + LST-1 sensitivities, our flux upper limits are
orders of magnitude above physically plausible values.

We can then, compute upper limits on the Super-Eddington

Super-Eddington Efficiency
5 3

efficiency parameter.
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Post merger Jet scenario

After merger, the remnant BH spin can realign
(Blandford—Znajek jet) interacting with other dense
regions creating strong forward/reverse shocks:

e Thermal + non-thermal breakout emission.
This emission will have some delay.
Strong dependence on R, (radial distance from
the SMBH). And depending on the distance from
us, we have different scenarios.

For S241125n, observed Swift-BAT delay (< 6 s
rest-frame) and short duration imply a merger deep
inside the disk (R < 0.01 pc), then highly absorbed at
TeV energies.

Predicted VHE fluxes are orders of magnitude below
MAGIC + LST-1.
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