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GRB Phenomenology
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Multiwavelength observations (radio-TeV) — unique probe of particle acceleration in relativistic shocks



GRBs detected in the Very High Energy (VHE, E > 100 GeV) domain
with Cherenkov Telescopes
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https://arxiv.org/abs/2507.05215
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What we know: General Trends in GRBs Afterglow
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What we know: General Trends in GRBs Afterglow

X-rays (2-10 keV)
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— Strong correlation between Ewxowr and afterglow luminosity in

X-rays and GeV


https://academic.oup.com/mnras/article/425/1/506/1000767
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https://arxiv.org/pdf/1906.11403

What we derive: Afterglow model

Liso/Eiso [s71]
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...How to increase the number of detected
GRBs?

— Follow-up also GRBs poorly localized by Fermi/GBM (or any
similar detector) with an optimized observational strategy




Number of GRBs
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M eth Od (Given the distributilon of Fluence, z, Ex)

Collect GRBs detected by Simulate one year of long
Swift/XRT and Fermi/GBM GRBs (220 events = GBM
detection rate)
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Simulate one year of long
GRBs (220 events = GBM
detection rate)
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Method

Collect GRBs detected by
Swift/XRT and Fermi/GBM

Simulate one year of long
GRBs (220 events = GBM
detection rate)

Study detectability and
observational strategy
using tilepy

Simulate VHE light curves

How? — Use the produced VHE light curves + sensitivity curves or IRFs when available
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texp [s]

200 GeV Light Curves (applicable for low zenith)
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https://www.ctao.org/for-scientists/performance/
https://pos.sissa.it/501/905/

texp [s]

1 TeV Light Curves (from medium to high zenith)
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https://www.sciencedirect.com/science/article/pii/S2214404822000222
https://pos.sissa.it/501/905/

Scheduling strategy for Fermi-GBM GRBs

Next steps: Understanding the trade-off between exposure time, latency and detectability
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Conclusions

Follow-up of poorly localized GRBs (large sky-loc) — simulated sample of 1 year of observations

* ;
o CTAO/LACT give promising results for early follow-up (max latency ~ 30 min)

o 40-50% of GRBs detectable

o  Worse detectability, mainly due to strong EBL-absorption (caveat: no extra effects
taken into account in our model)

o CTAO/LACT: less detections, maximum latency ~ 20-30 minutes

o ASTRI can see 5% of the events with single-repointing within ~ 2 min

— Early follow-up (up to 30-40 min) of Fermi/GBM (or similar detectors) GRBs could increase the
number of detections

— Optimize observational strategies, i.e. optimize tilying, or divergent pointing (see Ambrosini’s
talk)... work in progress!
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Backup




Method

Fune/Seem [s71]

Collect GRBs detected by
Swift/XRT and Fermi/GBM
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Why so few? Challenge for Early Follow-up

Number of GRBs followed up

104

Early follow-up depends on Fermi/GBM sky localization (via GCN notices)
GBM provides large error regions — poorly localized GRBs
Follow-up of only well localized GRBs: Swift/BAT GRBs, but less detections per year!

Distribution of delay (Abe et al 2025; 2013-2019)
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https://arxiv.org/abs/2507.05215

CTAO horizon:
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5 TeV Light Curves
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https://pos.sissa.it/501/905/

FoV of different instruments

Instrument FoV square deg
ASTRI 10° — /8.5
LACT 8° — 50.27
LST |[45° — 14.53
CTAO-North
MST | 7.5° | —» 44.18

Fermi/GBM localization ~ 2-300 deg"2

Swift/XRT localization ~ 0.16 deg"2
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Number of GRBs

Method

Collect GRBs detected by

Swift/XRT and Fermi/GBM

103 i

10%4

10!

100 4

I}~ —1 GBM GRBs
] [ @ Simulated GRBs

107 10~* 10°% 10> do~* 1p~

Fluence (era/cm?2)

10~%

Number of GRBs

80

60 -

40

20 1

Simulate one year of long
GRBs (220 events = GBM
detection rate)

1 From Greiner catalog
I Simulated GRBs

23



Angular separation between different GCN sky-loc
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Scheduling strategy for Fermi-GBM GRBs

Next steps: Understanding the trade-off between duration, coverage and detectability
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