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The Cosmic Ray Knee

Recently the cosmic ray all-particle spectrum and composition has been measured with high precision by
LHAASO across the knee [Cao+2024].

They find a knee position in the spectrum at 3.67 = 0.15 PeV, consistent with the knee in (In A),and spectral
index change Ay ~ 0.4
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The Cosmic Ray Knee

Source Origin

Knee explained by maximum energy achieved by
Galactic accelerators.

Sharp spectral break at PeV energies could be attributed
to evolution of SNR [Cristofari+2020].

Standard predictions of spectral change imply Ay > 2.
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Particles above knee exit diffusion resonant re%ime (T x E~
T

Diffusion Origin

and enter small-pitch-angle scattering
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This produces a spectral change Ay ~ 1.7 [Dundovic+2020]
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Dittusion-Drift Transition as the Origin of the Knee

Diffusion tensor: D;; = (D) — D )bb; + D 0;; — D €Dy, Cosmic ray transport: — V;D,(r) V;N(r) = Q(r)
L . . 1 o 0 0 0 0 0
Under cylindrical coordinates and azimuthal symmetry: rDy—| —— |D,—| +u, Fu,— | N(r) = Q(r)
r or or 0z 0z or 0z
. . 0(Dpby) 1 0(rDyby) . e
— Drift velocities u, = P U, = > associated to Hall diffusion.
< r r



Dittusion-Drift Transition as the Origin of the Knee

Diffusion tensor: D;; = (Dy — D )b;b; + D, 6;; — Ds€;by Cosmic ray transport: — V;D,(r) V;N(r) = Q(r)
. . . 1 o 0 0 0 0 0
Under cylindrical coordinates and azimuthal symmetry: rDy—| —— |D,—| +u, Fu,— | N(r) = Q(r)
r or or 07 07 or 07
. . A(Dyby) 1 0(rDyby) . e
— Drift velocities u, = P U, = > associated to Hall diffusion.
< r r
109- Escape timescgles
L [ Diffusion
~~~~~~~~~~~~~~~~~ Drifts
* Onginal 1dea of transition from perpendicular ditfusion to drifts . s
proposed 1n . , later re-explored 1n st T N
in a numerical-analytical hybrid approach.
4 For how many energy decades can drifts extend? = (Toer ™) : Y
| Tl T o 12
4 What 1s the dependency on the structure of the magnetic field? 10 : N :
4 Can the transition explain spectral and gramme observations simultaneously?
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Here: test-particle M=
simulations with synthetic
turbulent magnetic fields
monitoring diffusive
motion, timescale of cosmic
ray escape and grammage
all together for the first
time.

Galaxy-like
magnetic field +
turbulence




C R / Pro pé [Alves Batista et al., 2022]

Here: test-particle M= B
simulations with synthetic 0
turbulent magnetic fields
monitoring diffusive
motion, timescale of cosmic
ray escape and grammage
all together for the first
time.
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Here: test-particle M= B
simulations with synthetic 0
turbulent magnetic fields
monitoring diffusive
motion, timescale of cosmic
ray escape and grammage
all together for the first
time.

Galaxy-like Particle injection

magnetic field +
turbulence

H~ 100A.and n= 0.5
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Compute escape
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Diffusion
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: Drift

1 —— y= -0.43+0.02 .
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C R / Pro pg [Alves Batista et al., 2022]
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Azimuthal field

H~ 100Aand n= 0.5

Diffusion
regime
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Effect of
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Azimuthal field

H~100A. and n= 0.5

Knee-like
break

Diffusion
regime
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H~ 100A.and n= 0.3

Effect of
lowering

turbulence
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Field with vertical component
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Grammage higher than
estimates from B/C
measurements

Azimuthal field with B2 = 0.1B¢
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Grammage higher than Parallel diffusion 0.3
estimates from B/C dominates and makes

measurements escape faster

Xs — 0
xs =04 gr/cm2
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Grammage higher than Pa}‘allel diftusion 0.3
estimates from B/C dominates and makes Xs =0
measurements cSCapce faster i xs = 0.4 gr/cm?
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Summary and Conclusions

* Transition from perpendicular diffusion to Hall diffusion predicts a spectral break in agreement with the knee.

» For the first time, both propagation mechanisms have been characterised as function of particle rigidity, turbulence and magnetic
field geometry in test-particle stmulations. Results corroborate a diffusion-drift transition at the knee energy range.

* In closed-field-lines geometries, perpendicular diffusion 1s not an efficient escape mechanism as 1t predicts higher confinement
times in Galactic magnetic fields.

* (Coherent magnetic field structure enhancing particle escape via parallel diffusion 1s necessary for reproduction of grammage,
jeopardizing spectral shape of the break.

* Propagation explanation of cosmic ray knee may be inadequate or requires a more complex coherent magnetic field
structure.

Outlook:

» What 1s the maximum fraction of vertical magnetic field component B,/ B, , allowed?

» [s the cosmic ray knee explained by source maximum acceleration energy? Is a second population of Galactic sources peaking at
PeV energies required to reproduce observations?
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Dittusion-Drift Transition as the Origin of the Knee

4 For how many energy decades can drifts extend?
4+ What 1s the dependency on the structure of the magnetic field?

4 Can the transition explain spectral and gramme observations simultaneously?

Escape timescales
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Test-Particle Simulations of the Diffusion-Drift Transition

* Synthetic magnetic fields: turbulent spectrum assumed to be homogenous, 1sotropic and follow a power-law.
Random components Gaussian-distributed. C R /P 0 pg

* Test-particle simulations of TeV-PeV cosmic rays. Particle diffusion measured as function of rigidity and
turbulence level.
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Bohm-like coefficient

oB vl Dy xry
Turbulence level § = —— l
By
Kolmogorov turbulent spectrum s = 5/3, vy ~ e
qg=4 3r 0

Bend-over scale [, ~ few pc

Correlation length Corroboration of anomalous
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Simulation setup

Magnetic field: Test-particle:
+ Spacing of grid Ax ~ 1072 pc ~ 10-r, (E=10"¢V)  + Number of particles N, = 10°

—> Scattering resonance around PeV energy * Number of position/velocity measurements N, = 10°
» Number of grid points N,,;; = 2048 » Step for position/velocity measurements At = 0.1 r; /¢
. Sizeof grid L = A - Ngri p * Minimum and maximum integrations steps /... = 0.1 pc

and [, .= 100 Mpc
* Minimum turbulent scale L, ;, = 2 - A

Ansatz (Bieber & Matthaeus, 1997):

* Maximum turbulent scale L, .. = L/2
2
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Azimuthal antisymmetric field

{ ; n=20.5
108;
B Diffusion
L regime
o7l 7 =—0.58 £0.07
: Drift regime
y=—1.04+0.19
102 107! 100

rifAc



107§ i *
+~~+‘¥~
P
g 106 + ~~~~~~~~~~
= "‘f} “““
105E *
_ Pyt
] - y1 = -0.31%x0.11 { T
Lotd [ Y2 = -0.89+0.07 S
102 10"  10° 10! 102

A2|muthal field with B2 =0.1B% and n=10.3

E [PeV]

Azimuthal field with B2 =0.2B% and n=0.3

10’ §
I +\?‘41:. 4
E 10°; .
> 3 TR T
. N -
105 - +
1T y1= -0.37x£0.04 ' ++T ¢
1O4§ ......... y2 — O 93+0 09
1_6'_2 I LI |]|-|6|_1 I T T 100 I LI ||]|-||01 I LI ||]|-|I02

E [PeV]

Reducing the turbulence
leads to dominant of
parallel diffusion over

perpendicular diffusion

Increasing slightly the
vertical component of
the magnetic field
doesn’t reduce the
timescales enough
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Azimuthal field with B2 =0.1B5 and n=0.5
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Cosmic Ray Grammage

[Evoli+2019]
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