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: Yet: knowledge of entire population
d | desirable to

Derive Milky Way properties like energy
output in cosmic rays & connection to
locally observable cosmic-ray spectrum

E— Detected sources are a highly
biased sample

Understand contribution of unresolved
sources Iin diffuse emission We only see the brightest and
closest sources

ased data . TeVPA Valencia . 06.11.2025 2



Detection threshold effects
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Usually not enough!

Also severely limits the data set

Detection threshold depends on instrument characteristics
and analysis procedures (e.g. background estimation)

Galactic y (kpc)

Example H.E.S.S. Galactic Plane Survey

Detection threshold function of
longitude, latitude and source extension Osource
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Other instruments, other effects:
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= Fermi-LAT - homogeneous

T - exposure but larger background
10] % Compose g along the Galactic plane due to
AN 107 ergs horizo diffuse emission
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Completeness Level
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Even extremely bright sources can be missed!
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different spatial models

Based on simulated source populations and
implementation of the HGPS detection threshold
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galactic latitude [deg]

How to derive population properties with biased data?

Forward folding approach: Population synthesis generic source model:

sources characterised by position, radius, luminosity

Luminosity [phs™!]
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How to derive population properties with biased data?

Forward folding approach: Population synthesis generic source model:

sources characterised by position, radius, luminosity

Luminosity [phs™1!]
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How to derive population properties with biased data?

Forward folding approach: Population synthesis generic source model:

sources characterised by position, radius, luminosity
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For simple models analytical optimisation possible,
more complex models require scan of the parameter space Steppa & Egberts, A&A 2020
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Example: SNRs

Inclusion of source physics allows systematic scan of the physical parameter space
- constraints of source physics

with additional constraint on maximum energy

|Og N - |Og S Emax > 10 TeV in at least 4 sources
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Example: SNRs

Inclusion of source physics allows systematic scan of the physical parameter space
- constraints of source physics

with additional constraint on maximum energy
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Number of sources

Impact of the spatial distribution

Inclusion of intrinsic velocities of supernova progenitors

Supernova Remnants
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Runaway percentage

Freverrrereie

VP s o

Varlat’On of the fraCtiOn of Strict upper limit == == 50
runaway StarS in CC S = == Stringent limit == 10 "= 75
NRS Optimal region =es 30 100
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Integrated v-ray flux (> 1 TeV) [em ™ s~

Batzofin, Egberts, Meyer, Steppa 2025

Spatial distribution affects detectability
and thus, optimal parameter combination

Double effect:
* SNRs leaving the region of observations

 SNRs moving to regions of smaller ISM
density — lower luminosity

Another example of degeneracies
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Where source counts fail

flux for angular resolution of 0.01 deg
25 deg < | <45 deg

.
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Population model predicts
~200 detected sources for HAWC and
~300 for LHAASO-WCDA
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Where source counts fail

flux for angular resolution of 0.01 deg

44 42 40 38 36 34 32 30 28 26 24
1[°]

Population model predicts
~200 detected sources for HAWC and
~300 for LHAASO-WCDA

Angular resolution is crucial for source identification

AV €rs;, .
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flux for angular resolution of 0.5 deg
25 deg < | <45 deg
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Where source counts fail

flux for angular resolution of 0.01 deg flux for angular resolution of 0.5 deg
25 deg < | <45 deg

Wowowowowowomo%ow o ow o 1000 750 500 250 @ C

, _ to be compared to
Population model predicts

~200 detected sources for HAWC and
~300 for LHAASO-WCDA

Angular resolution is crucial for source identification

Source confusion has to be taken into account!

-3 0 3 6 9 12 15 18 21 24
Severs, s HAWC Collaboration 2021
&
@ﬁ@ Kathrin Egberts . Recovering population properties of gamma-ray sources in the presence of biased data . TeVPA Valencia . 06.11.2025

"
o(:pd
oam

13



Conclusion

Details of the detection threshold are crucial when investigating source populations
Detection threshold complex function depending on background, field of view, observation direction

IACTs have particularly complex detection thresholds due to pointed observations,
but also feature best angular resolution = worth the effort!

Even with limited datasets we can place constraints on source populations
(source physics as well as spatial distributions)

Parameter space strongly correlated, preventing the identification of one optimal parameter combination

Source confusion calls for more sophisticated means of comparing
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Likelihood optimisation for generic sources

realistic detection threshold as function of

Calculated number assumed spatial distribution position and angular extent

of detectable sources:
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assumed luminosity-radius function with free ( 47rd2 (x) ( d(x) )

parameters for optimisation

binning in L, R allows precalculation of the
Integrals...
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.. and optimisation of the free parameters in

a likelihood fit
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Shock velocity and radius are determined at the
age of the SNR, taking into account the density of
the ISM (empirical model closely matching the
GALPROP gas distribution - Shibata et al. 2010)

Magnetic field amplification:

- initially from the growth of non-resonant
streaming instabilities upstream of the shock (Bell
et al. 2013)

- later resonant streaming instabilities (Morlino &
Caprioli 2012)

Based on the shock and the magnetic field

amplification we calculate the maximum energy of

accelerated particles

- Determined by the growth of non-resonant
streg\mjgfg instabilities (Bell) (Bell et al. 2013)

"

SNR Modelling & Parameters

—Aa
* fer(p) = A( P ) Differential spectrum of accelerated particles

mpc
* p is the momentum and o is the spectral index

* The normalisation (A) is found by requiring the CR pressure to be some
fraction, 1.r of the ram pressure at the shock location.

1 max
+ S L dp 4np? for (D)PY(P) = 1crpVE
| |
& ) Y

I Ram pressure
Cosmic ray pressure

Relative rates of supernovae: Thermonuclear 32%, Core
collapse 68%, 3 supernovae per century
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