

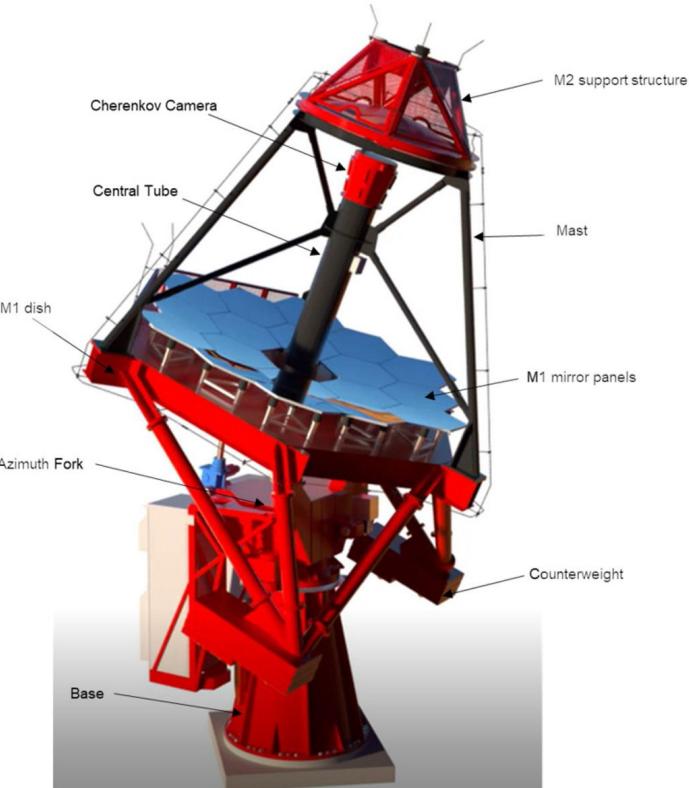
Universidad
de La Laguna

Cofinanciado por
la Unión Europea

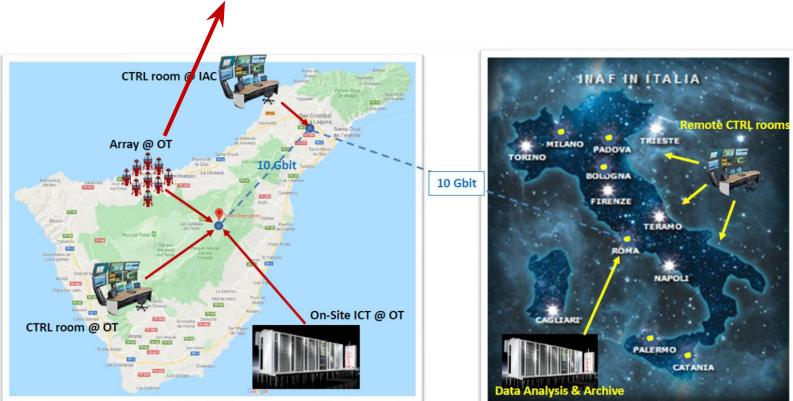
The ASTRI Mini-Array: Overview and first results

Edgar Molina*

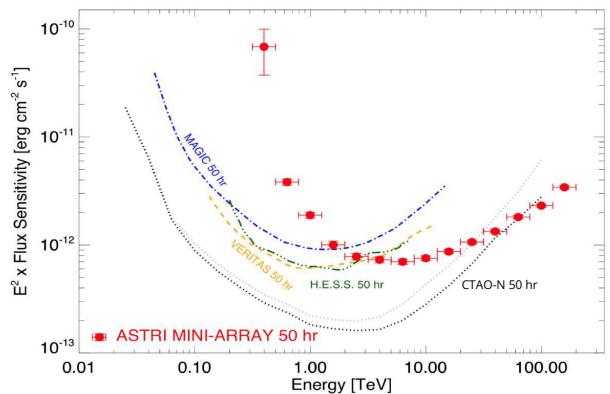
for the ASTRI Project


*Instituto de Astrofísica de Canarias (IAC)

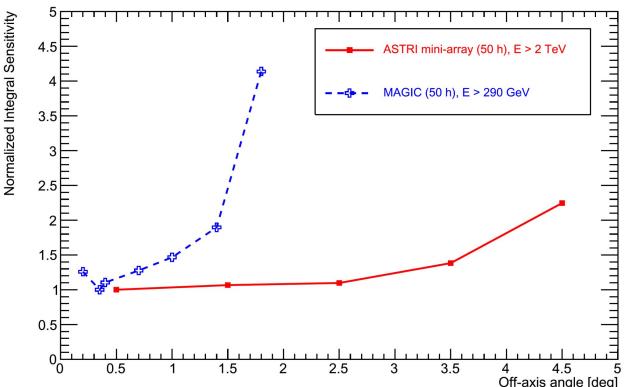
TeV Particle Astrophysics (TeVPA)
Valencia, 3 November 2025


The ASTRI Mini-Array

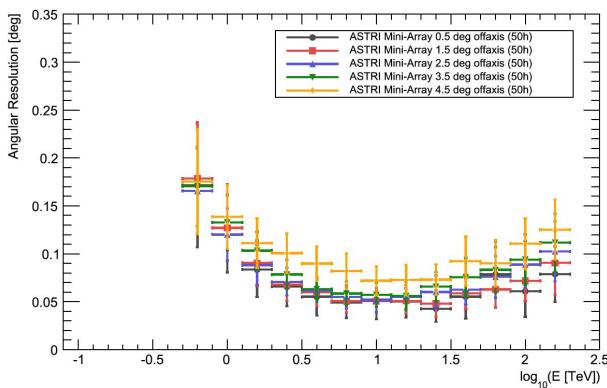
- ASTRI is an array of 9 Cherenkov telescopes under construction at the **Observatorio del Teide (OT)**.
- Project led by **INAF**, with more than **150 researchers** from institutions in 5 different countries.
- The telescopes have a diameter of **4.3 m** and a **dual-mirror** (modified Schwarzschild-Couder) optical layout. [Vassiliev+07](#)
 - Wide field of view (FoV $\sim 10^\circ$) and good off-axis performance.


The ASTRI site and layout

- ASTRI is located at the Observatorio del Teide in Tenerife, Spain, at an **altitude of 2360 m**.
- The telescopes cover a wide area of around **650m x 270m**, with a median telescope separation of **~160 m**.
 - Chosen based on MC simulations and existing infrastructure.
- Both **onsite and remote** control rooms are available.
- Data are initially stored in an onsite data center and later transferred to the offsite data center at INAF-OAR (Rome).



Expected performance

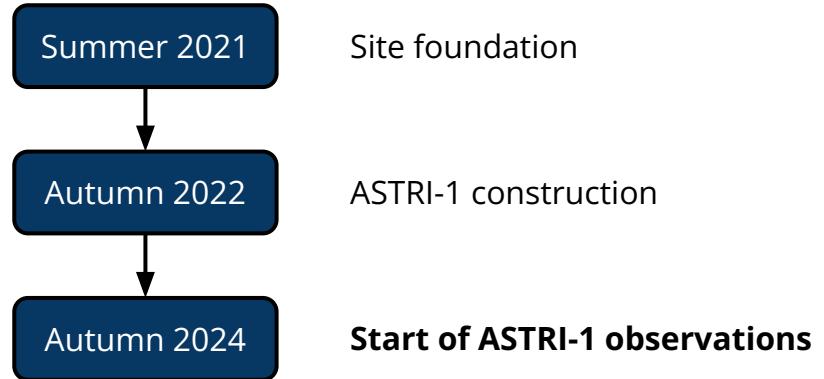

Performance study based on MC simulations of the full ASTRI array

Better sensitivity than current instruments for energies above ~ 3 TeV.

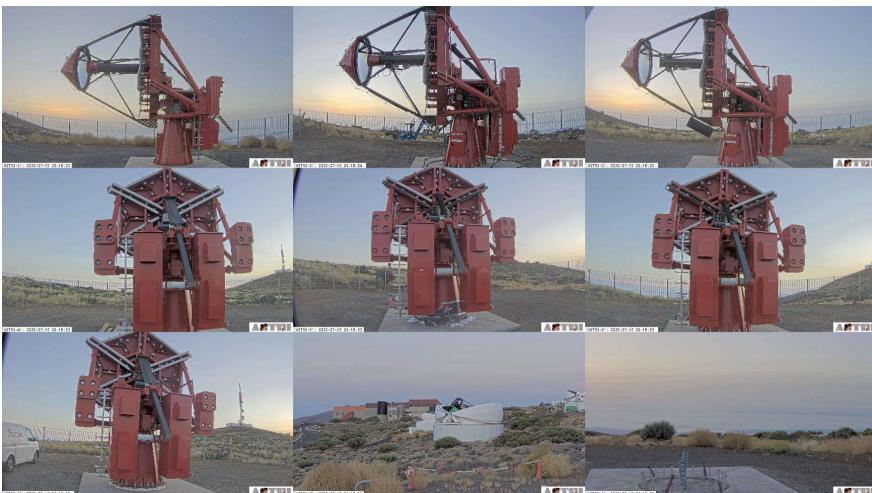
Wide FoV with homogenous acceptance up to $\sim 3.5^\circ$.

Angular resolution of $\sim 0.05^\circ$ for energies above a few TeV. Stable up to $\sim 3.5^\circ$ offsets.

Timeline and current status


Timeline and current status

Summer 2021


Site foundation

Timeline and current status

Timeline and current status

Science cases

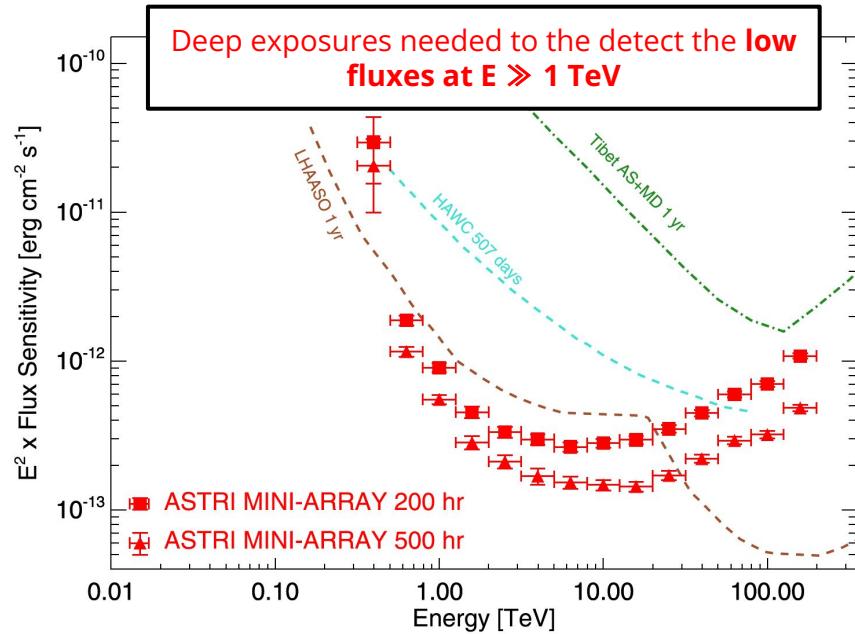
- **Cosmic-ray origins:**
 - PeVatrons
 - Particle propagation and escape
 - Pulsar wind nebulae and TeV halos
- **Fundamental physics:**
 - Infrared EBL constraints
 - Intergalactic magnetic fields
 - Lorentz invariance violation, axion-like particles, dark matter searches
- Transients events (Gamma-ray bursts, flares,...) **See talk by A. Carosi**
- Non gamma-ray astronomy (Direct cosmic-ray measurement, intensity interferometry)

Science cases

- Cosmic-ray origins:
 - PeVatrons
 - Particle propagation and escape
 - Pulsar wind nebulae and TeV halos
- Fundamental physics:
 - Infrared EBL constraints
 - Intergalactic magnetic fields
 - Lorentz invariance violation, axion-like particles, dark matter searches
- Transients events (Gamma-ray bursts, flares,...) → **See talk by A. Carosi**
- Non gamma-ray astronomy (Direct cosmic-ray measurement, intensity interferometry)

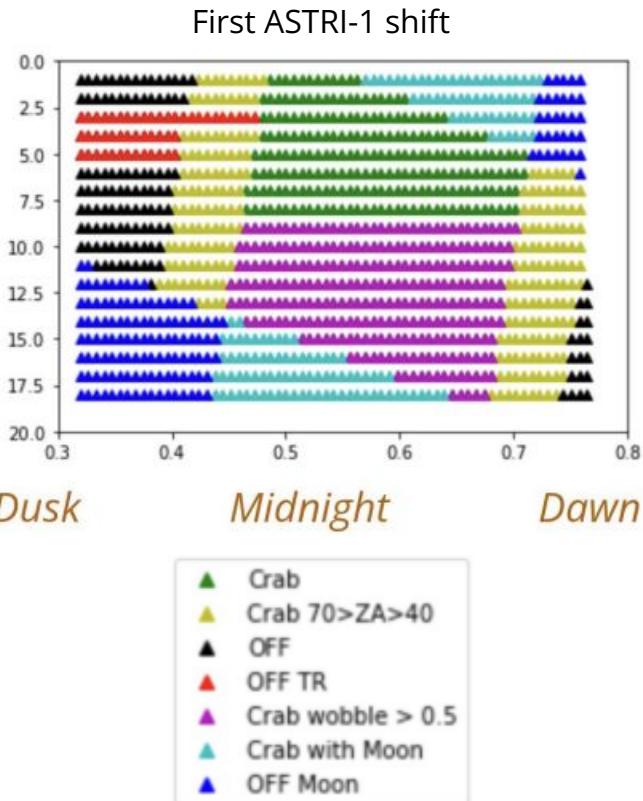
90 sources, 43 of them detected
above 100 TeV

The First LHAASO Catalog of Gamma-Ray Sources

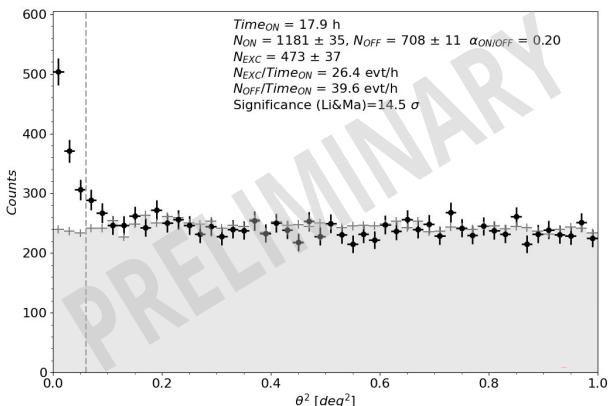
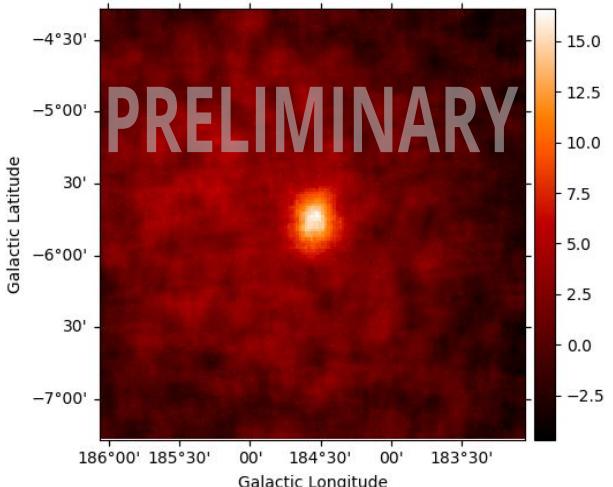

Zhen Cao^{1,2,3}, F. Aharonian^{4,5}, Q. An^{6,7}, Axikegu⁸, Y. X. Bai^{1,3}, Y. W. Bao⁹, D. Bastieri¹⁰, X. J. Bi^{1,2,3}, Y. J. Bi^{1,3}, J. T. Cai¹⁰, Q. Cao¹¹, W. Y. Cao⁷, Zha Cao^{6,7}, J. Chang¹², F. J. Chang¹³, A. M. Chen^{1,3}, E. S. Chen^{1,2,3}, Liang Chen¹⁴, Lin Chen⁸, Long Chen¹, M. J. Chen^{1,3}, M. L. Chen^{1,3,6}, Q. H. Chen⁸, S. H. Chen^{1,2,3}, S. Z. Chen^{1,3}, T. L. Chen^{1,3}, Y. Chen¹, N. Cheng^{1,3}, Y. D. Cheng^{1,3}, M. Y. Cui¹², S. W. Cui¹¹, X. H. Cui¹⁶, Y. D. Cui¹⁷, B. Z. Dai¹⁸, H. L. Dai^{1,3,6}, Z. G. Dai⁷, Danzengluobu¹⁵, D. della Volpe¹⁹, X. Q. Dong^{1,2,3}, K. K. Duan¹², J. H. Fan¹⁰, Y. Z. Fan¹², J. Fang¹⁸, K. Fang^{1,3}, C. F. Feng²⁰, L. Feng¹², S. H. Feng¹³, X. T. Feng²⁰, Y. L. Feng¹⁵, S. Gabici²¹, B. Gao^{1,3}, C. D. Gao²⁰, L. Q. Gao^{1,2,3}, Q. Gao¹⁵, W. Gao^{1,3}, W. K. Gao^{1,2,3}, M. M. Ge¹⁸, L. S. Geng¹³, G. Giacinti¹³, G. H. Gong²², Q. B. Gou^{1,3}, M. H. Gu^{1,3,6}, F. L. Guo¹⁴, X. L. Guo⁸, Y. Q. Guo^{1,3}, Y. T. Guo¹², Y. A. Han²³, H. H. He^{12,3}, J. Y. He¹², X. B. He¹⁷, Y. He⁸, M. Heller¹⁹, Y. K. Hor¹⁷, B. W. Hou²³, C. Hou^{1,3}, X. Hou²⁴, H. B. Hu^{1,2,3}, Q. Hu^{1,2,3}, S. C. Hu^{1,3,25}, D. H. Huang⁸, T. Q. Huang^{1,3}, W. J. Huang²⁰, Y. T. Huang²⁰, X. Y. Huang¹², Y. Huang^{1,2,3}, Z. C. Huang⁸, X. L. Ji^{1,3,6}, H. Y. Jia⁸, K. Jia²⁰, K. Jiang^{6,7}, X. W. Jiang^{1,3}, Z. J. Jiang¹⁸, M. Jin⁸, M. M. Kang²⁶, T. K. Li¹³, D. Kuleshov²⁷, K. Kurinov²⁷, T. B. Li¹¹, Cheng Li^{6,7}, Cong Li^{1,3}, D. Li^{1,2,3}, F. Li^{1,3,6}, H. B. Li^{1,3}, H. C. Li^{1,3}, H. Y. Li^{1,2,3}, J. Li^{1,2,3}, Jian Li⁷, Jie Li^{1,3,6}, K. Li^{1,3}, W. L. Li²⁰, W. L. Li¹³, X. R. Li^{1,3}, Xin Li^{6,7}, Y. Z. Li^{1,2,3}, Zhe Li^{1,3}, Zhuo Li²⁸, E. W. Liang²⁹, Y. F. Liang²⁹, Y. G. Lin¹⁷, B. Liu^{1,3}, C. Liu^{1,3}, D. Liu²⁰, H. Liu⁸, H. D. Liu¹³, J. Liu^{1,3}, J. L. Liu^{1,3}, J. Y. Liu^{1,3}, M. Y. Liu¹⁵, S. Y. Liu⁹, S. M. Liu⁸, W. Liu^{1,3}, Y. Liu¹⁰, Y. N. Liu²², R. Lu¹⁸, Q. Luo¹⁷, H. K. Lv^{1,3}, B. Q. Ma²⁸, L. L. Ma^{1,3}, X. H. Ma^{1,3}, J. R. Mao²⁴, Z. Min^{1,3}, W. Mithumisuri³⁰, H. J. Mu²³, Y. C. Nan^{1,3}, A. Neronov²¹, Z. W. Ou¹⁷, B. Y. Pang⁸, P. Pattarakijwanich³⁰, Z. Y. Pei¹⁰, M. Y. Qi^{1,3}, Y. Q. Qi¹¹, B. Q. Qiao^{1,3}, J. J. Qin⁷, D. Ruffolo³⁰, A. Sáiz⁶, D. Semikoz²¹, C. Y. Shao¹⁷, L. Shao¹¹, O. Shchegolev²⁷, X. D. Sheng^{1,3}, F. W. Shi³², H. C. Song²⁸, Yu. V. Stenkin^{27,31}, V. Stepanov²⁷, Y. Su¹², Q. N. Sun⁸, X. N. Sun²⁹, Z. B. Sun³¹, P. H. T. Tam¹⁷, Q. W. Tang³², Z. B. Tang^{6,7}, W. W. Tian^{2,16}, C. Wang³³, C. B. Wang⁸, G. W. Wang⁷, H. G. Wang²⁰, H. H. Wang¹⁷, J. C. Wang²⁴, K. Wang¹, L. P. Wang²⁰, L. Y. Wang^{1,3}, P. H. Wang⁸, R. Wang²⁰, W. Wang¹⁷, X. G. Wang²⁰, X. Y. Wang⁹, Y. Wang⁸, Y. D. Wang¹³, Y. J. Wang^{1,3}, Z. H. Wang²⁶, Z. X. Wang¹⁸, Zhen Wang¹³, Zheng Wang^{1,3,6}, D. M. Wei¹², J. Y. Wei¹², Y. J. Wei^{1,2,3}, T. Wen¹⁸, C. Y. Wu^{1,3}, H. R. Wu^{1,3}, S. Wu^{1,3}, X. F. Wu¹², Y. S. Wu⁷, S. Q. Xi^{1,3}, J. Xia^{7,12}, J. J. Xia⁸, G. M. Xiang^{2,14}, D. X. Xiao¹¹, G. Xiao^{1,3}, G. G. Xin^{1,3}, Y. L. Xin⁸, Y. Xing⁴, Z. Xiong^{1,2,3}, D. L. Xu^{1,3}, R. F. Xu^{1,2,3}, R. X. Xu²⁸, W. L. Xu²⁶, L. Xu²⁰, D. H. Yan¹⁸, J. Z. Yan¹², T. Yan^{1,3}, C. W. Yang²⁶, F. Yang¹¹, F. F. Yang^{1,3,6}, H. W. Yang¹⁷, J. Y. Yang¹⁷, L. L. Yang¹⁷, M. J. Yang^{1,3}, R. Z. Yang⁷, S. B. Yang¹⁸, Y. H. Yao²⁶, Z. G. Yao^{1,3}, Y. M. Ye²², L. Q. Yin⁹, N. Yin²⁰, X. Y. Hou^{1,3}, Z. Y. You^{1,3}, Y. H. Yu⁷, Q. Yuan¹², H. Yue^{1,2,3}, H. D. Zeng¹², T. X. Zeng^{1,3,6}, W. Zeng¹⁸, M. Zha^{1,3}, B. B. Zhang⁹, F. Zhang⁸, H. M. Zhang⁹, H. Y. Zhang^{1,3}, J. L. Zhang¹⁶, L. X. Zhang¹⁰, Li Zhang¹⁸, P. F. Zhang¹⁸, P. P. Zhang^{7,12}, R. Zhang^{7,12}, S. B. Zhang^{2,16}, S. R. Zhang¹¹, S. S. Zhang^{1,3}, X. Zhang⁹, X. P. Zhang^{1,3}, Y. F. Zhang⁸, Yi Zhang^{1,2}, Yong Zhang^{1,3}, B. Zhao⁸, J. Zhao^{1,3}, L. Zhao^{6,7}, L. Z. Zhao¹¹, S. P. Zhao^{12,20}, F. Zheng³³, B. Zhou^{1,3}, H. Zhou¹³, N. J. Zhou¹, M. Zhou³², P. Zhou¹, R. Zhou²⁶, X. X. Zhou⁸, C. G. Zhu²⁰, F. R. Zhu⁸, H. Zhu¹⁶, K. J. Zhu^{1,2,3,6}, and X. Zuo^{1,3}

(The LHAASO Collaboration)

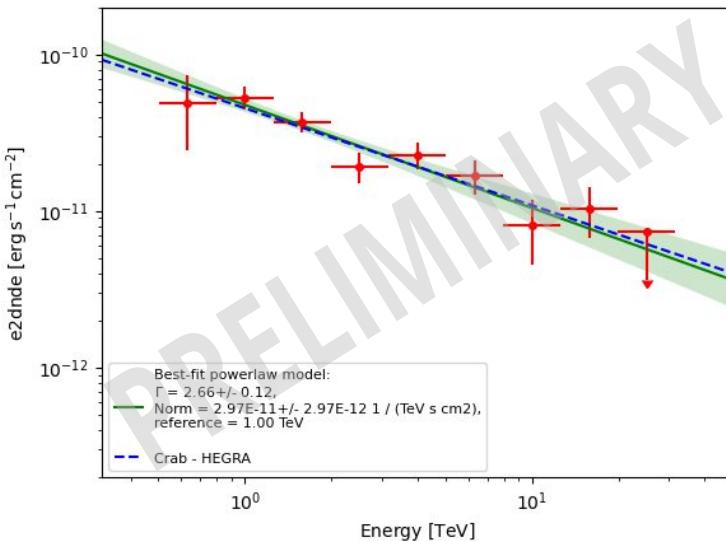
Cao+2024


Science cases

- **Cosmic-ray origins:**
 - **PeVatrons**
 - Particle propagation and escape
 - Pulsar wind nebulae and TeV halos
- **Fundamental physics:**
 - Infrared EBL constraints
 - Intergalactic magnetic fields
 - Lorentz invariance violation, axion-like particles, dark matter searches
- Transients events (Gamma-ray bursts, flares,...) → **See talk by A. Carosi**
- Non gamma-ray astronomy (Direct cosmic-ray measurement, intensity interferometry)



ASTRI-1: Observations

- ASTRI-1 operations started in **November 2024**.
- More than **400h of data** have been collected up to now:
 - Scientific data: **Crab Nebula**, Mrk501, BLLac, Perseus
 - Technical data including fixed OFF pointings.
- Observations were conducted in different trigger and offset configurations (0.5° – 4.5°).
- Very little time lost due to technical problems.
 - **Operational efficiency of ~90%** (without accounting for weather).


ASTRI-1: Preliminary results

- The preliminary results shown here are for **17.9h** of **Crab Nebula data** taken between 11/2024 and 02/2025, with
 - offset of 0.5°
 - zenith angle below 30°
 - no moon
 - quality cuts applied
- A clear **14.5σ detection** is obtained.
- The spectrum is compatible with the one obtained by HEGRA (and other IACTs) up to 20 TeV. [Aharonian+00](#)

ASTRI-1: Preliminary results

- The preliminary results shown here are for **17.9h** of **Crab Nebula data** taken between 11/2024 and 02/2025, with
 - offset of 0.5°
 - zenith angle below 30°
 - no moon
 - quality cuts applied
- A clear **14.5σ detection** is obtained.
- The spectrum is compatible with the one obtained by HEGRA (and other IACTs) up to 20 TeV. [Aharonian+00](#)

Summary

- The ASTRI Mini-Array is an array of 9 Cherenkov telescopes at the OT.
 - Expected completion date by late 2026.
- Two telescopes are already operational and taking data.
- The array will provide good energy and angular resolution over a wide FoV for energies well above 1 TeV.
 - Large exposures needed due to the low fluxes.
 - Complementary to LHAASO. Synergies with CTAO-North.
- Preliminary results with ASTRI-1 reproduce well the Crab spectrum.
- Stereo results with 2+ telescopes coming shortly!

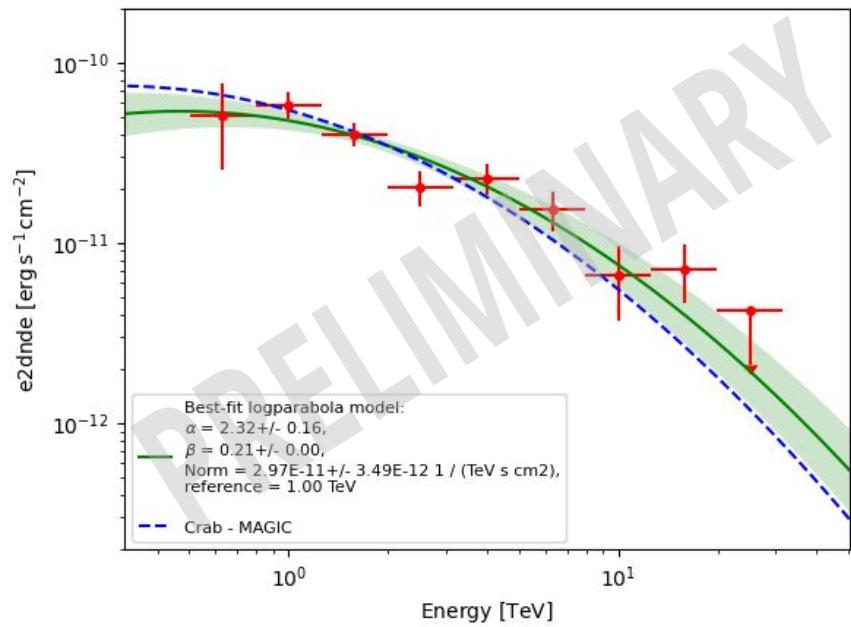
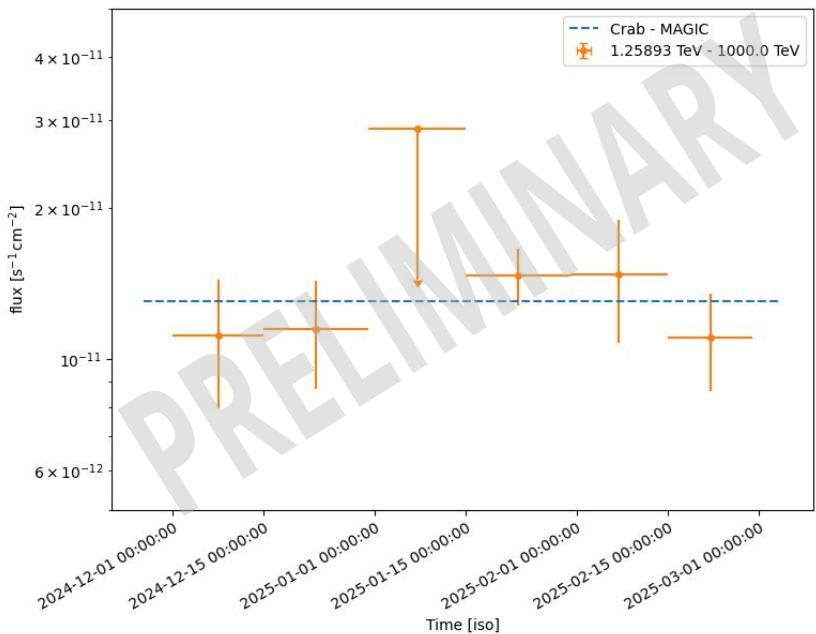
THANK YOU FOR YOUR ATTENTION

Universidad
de La Laguna

Edgar Molina
(emolina@iac.es)

on behalf of the ASTRI Project

TeV Particle Astrophysics (TeVPA)
Valencia, 3 – 7 November 2025



Backup

Data analysis (not fully optimized yet)

A-SciSoft

- L0 calibration:
 - Standard procedure
 - Cleaning/Parameterization: relative cleaning 4.0-2.0
- L1 reconstruction:
 - Quality cuts: SIZE > 50, LEAKAGE < 0.1, NUMISLAND < 2
 - Pointlike-srcindep approach (random forest for g/h, energy and arrival direction)
 - Pointing and source position calculation from astrometry of VARIANCE data (without PMC information)
- L2 reconstruction:
 - No additional Random Forests
- L3 event list and IRF generation.
- L4-L5: Analysis with **Gammapy**

ASTRI-1: Preliminary results

