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Current AGN modelling

* Combining MWL data on flux point level:
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Current AGN modelling

* Combining MWL data on flux point level:
* We construct flux points for single instruments separately
* using different frameworks for different instruments
* assuming simplistic models (e.g. power-law) - single instruments cannot constrain
physical models (e.g. SSC)
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Current AGN modelling

* Combining MWL data on flux point level:
* We construct flux points for single instruments separately
* using different frameworks for different instruments

* assuming simplistic models (e.g. power-law) - single instruments cannot constrain
physical models (e.g. SSC)

* Selection of the physical model based on flux points
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Current AGN modelling

* Combining MWL data on flux point level:
* We construct flux points for single instruments separately
* using different frameworks for different instruments

* assuming simplistic models (e.g. power-law) - single instruments cannot constrain
physical models (e.g. SSC)

Comparison of Contours

* Selection of the physical model based on flux points

* Fitting on flux points adds a bias: - 10 @

* Simple test with a blackbody spectrum using X-rays 0s
(XSPEC (1999ascl.s0ft100054)) shows a bias of 1sigma i
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* Long-term goal: Enable event-based multi-messenger fits in Gammapy

* We start with blazars and JetSet as an example here ’/7-‘-


http://ascl.net/9910.005

A new approach
7T A Python package for
* Joined MWL fit on event basis using Gammapy gamma-ray astronomy



A new approach /-\‘ /
7T A Python package for

* Joined MWL fit on event basis using Gammapy gamma-ray astronomy
* Gammapy:

* Python package for gamma-ray astronomy
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Cammapy
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Gammapy & MWL data

* Works nicely for gamma-ray data

and joint instrument fits:
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Gammapy & MWL data

* Works nicely for gamma-ray data
and joint instrument fits:

* Extension to X-rays:

https://github.com/registerrier/gammapy-ogip-spectra
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Gammapy & MWL data

* Works nicely for gamma-ray data

and joint instrument fits:

* Extension to X-rays:

https://github.com/registerrier/gammapy-ogip-spectra
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Extension to UV/ optical:

https://github.com/mireianievas/gammapy_mwl_workflow
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New AGN modelling approach with Gammapy

. Building on this gammapy_mwl_workflow and pub|ic data

* IRFs from UV to gamma-rays within Gammapy
* Real data from Swift: UVOT + XRT, Fermi-LAT (UV, X-rays and gamma-rays)
* Simulations from CTAO (Very-high-energy gamma-rays)

* Simulation of MWL data based on these IRFs using Gammapy:
* Physical model:
* Leptonic Self-Synchrotron (SSC) model with EBL absorption
* JetSeT (2020ascl.soft09001T) With its Gammapy plugin
+ Systematics for different bands

+ Absorption processes via the sherpa (10.5281/zenodo.593755.) module


https://ascl.net/2009.001
https://doi.org/10.5281/zenodo.593753

Gammapy & SSC

* We produce 2 MWL Gammapy datasets:
1) Event data (DL3) set with event lists and IRFs
2) Flux points data set:
* Produced for each waveband
* Assuming simple power laws

* Mimics common approaches



Gammapy & SSC

* We produce 2 MWL Gammapy datasets:

1) Event data (DL3) set with event lists and IRFs

2) Flux points data set:

* Produced for each waveband

* Assuming simple power laws

* Mimics common approaches

* We fit both datasets with a SSC
model using JetSeT
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Facilitating multi-messenger modelling using Gammapy
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Facilitating multi-messenger model

* Works quite well and events fit shows
* less bias/better error estimation

* better convergence -
up to ~5 free parameters

* But events fit takes longer (5-10x),
e.g. 35 vs 10 min for 3,
190 vs. 50 min for 5 free parameters

* JetSet timing inside Gammapy
at one E: 0.02 sec

* More complex models
(e.g. hadronic ones) > 1 min

— cannot be run on the fly
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Facilitating multi-messenger modelling using Gammapy

* Work-around methods:

* Grid of precomputed models
* 10 grid points per parameters

* 200 grid points in energy

* Use grid interpolation during the fit



Facilitating multi-messenger modelling using Gammapy

* Work-around methods:

* Grid of precomputed models
* 10 grid points per parameters

* 200 grid points in energy

* Use grid interpolation during the fit

* Seems to work well
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Facilitating multi-messenger modelling using Gammapy

* Work-around methods:

Grid of precomputed models
* 10 grid points per parameters

* 200 grid points in energy

Use grid interpolation during the fit

Seems to work well

BUT e.g. overloads memory for
a high number of paramters
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Flux-point-based fit
Simulated value
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Lessons learnt so far

* Gammapy enables us to fit physical models directly on event basis
* Reducing biases and assumptions
* Taking into account absorption, systematics or e.g. also ULs naturally

* But we are still limited by the large amount of parameters
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Lessons learnt so far

* Gammapy enables us to fit physical models directly on event basis
* Reducing biases and assumptions
* Taking into account absorption, systematics or e.g. also ULs naturally

* But we are still limited by the large amount of parameters

* For fast models (e.g. leptonic ones)
* Fitting can be run by Gammapy on the fly

* We also investigate various fitting methods and Bayesian nested sampling, which is
limited by the Fermi alanysis = minuit preferred currently

* For slow models (e.g. hadronic ones) - multimessenger fitting
* We are currently investigating grid models + interpolation methods

* Neural networks and other machine learning methods might be a promising alternative



Thank you

or your attention!
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