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Dark matter spikes
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SM POP III Stars as SMBH seeds

[8] Bertone et al. (2022)
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<matter Spi

- Spikes as annihilation boosters

- Gravitational Waves: Accretion and Dynamical Friction (EMRIs)

[9] Cole et al. (2022)
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Relativistic Dark matter Spikes: Whny do we care

Relativistic accretion and dynamical friction

[11] Kogan and Tsupko (2017)



Relativistic Dark matter Spikes: Whny do we care

Relativistic accretion and dynamical friction
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Adiabatic Growtnh of Pop Il star
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[nstant Collapse, Evolving the Distrioution function

- Assuming that the system can be well approximated as having reached a steady state
equilibrium, we know per the Jeans Theorem that the distribution function should depend
only on the Integrals of motion of the particle. In a static spherically symmetric potential this
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- Liouville's theorem tells us that the distribution function is constant along the trajectories of
the system, we also know that we can relate the energy before and after collapse by the

GM
equation k (EC, r) =FE_ — ( — O (r))
r

- As the DM evolves in the BH potential the particles will undergo ergodic relaxation until it
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reaches a new equilibrium configuration such that. f.(E, L) = [
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Instant Collapse GR

 The concept of an instantaneous collapse it's ill defined in GR, for
the simple fact that the concept of an “instantaneous” collapse
depends on the reference frame.

. [T we take a stationary reference frame with respect to the fluid,
we can approximate the collapse as instantaneous by taking an
hypersurface defined by t=constant and “glue” the star’'s metric to

the Schwarzschild one.

. However it's impossible to evolve the geodesic equations for u’
and u” due to divergences of the time derivatives of the metric .



Instant Collapse GR

. Other people have already studied similar scenarios when
the derivatives of the metric diverge! In these cases what we
can use are the so called Israel junction conditions.

. These are usually used to study sudden changes due to thin
shells of matter, but they have also been used to study space-
ike changes in metric for some exotic theories.

. IMmposing the first junction condition, the conservation of the
induced metric, gives us the relation &; (E¢,1;) = gf\/goofi
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Oppenneimer snyder Collapse
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Comparing Distrioution functions
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What 1s next

« Regrowth of the SMBH post collapse will likely erase some of these properties

- We are now starting to look into how these effects impact the GW signals
and detection.

- [T the results are interesting this could be extended to the Kerr case.

- Baryonic effects and Dynamical friction from infalling compact objects may
impact the central regions of the spike.

- Adding effects from self-interactions and checking if these causes any
degeneracies.



T'hank you for listening!

Any Questions?



