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What’s special about extreme mass ratio inspirals?

• A binary black hole system with 
mass ratio 


• Rich dynamics due to eccentric 
orbits, spin precession and 
thousands of excited harmonics


• Long duration gravitational wave 
signals - could remain in LISA 
band for years - opportunity to 
observe millions of cycles

q = m2/m1 ≤ 10−4

2
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Many astrophysics and fundamental physics opportunities…

…if we can measure the parameters to very high precision

• Formation of intermediate mass black 
holes (Volonteri 2010)


• Environmental effects - dark matter, ultra-
light bosons, accretion disks around 
primary object (Eda et al. 2013, Macedo et al. 2013, 
Barausse et al. 2014, Kavanagh et al. 2020, Khalvati et al. 2024, 
Baumann et al. 2022, Barsanti et al. 2023, Zhang et al. 2023, Tomaselli 
et al. 2024, Cole et al. 2023, Speri et al. 2023, Duque et al. 2024, 
Coppaoni et al. 2025…)


• Tests of General Relativity (Han & Chen 2019, Gupta 
et al. 2022, Speri et al. 2024, Kejriwal et al. 2024, A. Cardenas-
Avendano & Sopuerta 2024)

Credit: NASA4



Even in vacuum, EMRIs have complicated waveforms that evolve 
significantly in time - enables precision measurement but expensive

One year before ‘plunge’

Just before ‘plunge’

Chua et al. arXiv:2008.06071Abbott et al. arXiv:1602.03837

Equal stellar-mass EMRIs
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https://arxiv.org/abs/1602.03837


• Some parameters can theoretically 
be measured to a precision of e.g. 
0.01% (eccentricity), 0.003% 
(primary mass), 0.005% (secondary 
mass)


• Example of MCMC run initiated very 
close to the true injected values

Liang et al. arXiv:2409.07957
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Potential for extremely precise parameter measurements



Potential for extremely precise parameter measurements

• Some parameters can theoretically 
be measured to a precision of e.g. 
0.01% (eccentricity), 0.003% 
(primary mass), 0.005% (secondary 
mass)


• Example of MCMC run initiated very 
close to the true injected values


• Precision required for new physics 
inferences

Liang et al. arXiv:2409.07957
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Vast and multi-modal parameter space

• However the EMRI parameter 
space is vast, making search 
and parameter estimation 
strategies extremely difficult


• There are also many 
degeneracies between 
parameters, so the parameter 
landscape is highly multi-modal


• Prior width on just the mass is a 
factor of  larger than 
posterior

105
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See e.g. Chua & Cutler arXiv:2109.14254



EMRIs in the milliHertz frequency band will be buried in 
non-stationary, non-Gaussian noise

LISA Red Book: arXiv:2402.075719



How and why sequential simulation-based inference might help

1. Simulation-efficient way to narrow down a vast and multi-modal parameter 
space (important because EMRI simulations are also relatively expensive)


2. Future goal will be to cope with non-stationary, non-Gaussian noise (as well 
as many overlapping sources), where likelihood-based methods tend to 
become expensive or unfeasible
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Sequential simulation-based inference at a glance
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Yes - start new round n+1
No

Bhardwaj et al. 2023

Simulate Train network Estimate 
posterior

Truncate 
prior?

Convergence

Round n=0



Simulation set-up
• Signal simulated with Fast EMRI 

Waveforms (FEW) code (version 1)


• Fed through fastlisaresponse 
which implements the LISA 
detector response in time domain 
and outputs the signal projected 
onto the ‘A’, ‘E’ and ’T’ time delay 
interferometry channels


• Add noise sampled from the 
power spectral density as 
computed by pycbc (analytical 
including confusion noise)

dt = 10 s, Tobs = 0.1 yr, m1 = 5.385 × 105 M⊙, m2 = 50.55 M⊙, p0 = 10.35 e0 = 0.2927, cos θK = 0.0384, ϕK = 5.212, dL = 232.8 Mpc, Φϕ = 2.966, Φr = 2.014, cos θS = 0.4107, ϕS = 3.124

Note - bin-by-bin noise dominated but accumulated optimal SNR is 640
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Training set-up
PEREGRINE-style approach - Truncated Marginal Neural Ratio Estimation

• Train a neural network to recognise whether parameter vector  and signal 
are drawn jointly  or marginally  - binary classification


• Minimise the binary-cross entropy loss function:


• Optimal classifier  is the log of the likelihood-to-evidence ratio - re-
weight by prior samples to estimate the posterior

θk x
p(x, θk) p(x)p(θk)

̂ρk,ϕ(x, θk)

Bhardwaj et al. 2023

Miller et al. 2021

ℒ[ ̂ρk,ϕ] = − ∫ {p(x, θk)ln σ( ̂ρk,ϕ(x, θk)) + p(x)p(θk)ln [1 − σ( ̂ρk,ϕ(x, θk))]} dx dθk .
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Likelihood

Evidence

Posterior

Prior

Jointly drawn samples

Marginally drawn samples 



Effectively narrows down parameter space

• Parameter space for intrinsic parameters narrowed significantly via truncation 
between rounds


• Proposal distribution volume a million times smaller than prior volume


• Differential evolution (stochastic optimiser) performs less well (however see Strub 
et al. 2025)
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Posteriors/proposal distributions

• 6 sequential rounds, 
150K simulations each 
round, approx 12 hours 
each round


• Injected values all within 
2  credible intervals


• The relative half-widths 
(2  credible intervals) are 
0.3% for , 2% for , 
0.3% for  and 2% for 

.

σ

σ
m1 m2
p0

e0
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Comparison with MCMC 

• Compare efficiency by 
choosing like-for-like 
starting states


• MCMC prior chosen to be 
the 6th round prior 
identified with TMNRE


• 32 walkers and 4687 steps 
~ waveform evaluations 
approximately 150K


• 2 days wall-clock time


• Chains not converged
17



Conclusions

• TMNRE narrows down parameter space volume (by a factor of a million) very 
efficiently from wide priors


• Estimates proposal distributions that are better converged than MCMC when 
compared with same number of waveform evaluations and starting states


• Improvements required in order to achieve precise parameter measurements - 
use output as proposal distributions, compress data offline, non-uniform 
truncation methods


• Eventually tackle non-stationary, non-Gaussian noise and overlapping sources


• How and when do we fold back in environmental effects to the data analysis 
pipeline?
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Many astrophysics and fundamental physics opportunities…

…if we can measure the parameters to very high precision

• Formation of intermediate mass black 
holes (Volonteri 2010)


• Environmental effects - dark matter, ultra-
light bosons, accretion disks around 
primary object (Eda et al. 2013, Macedo et al. 2013, 
Barausse et al. 2014, Kavanagh et al. 2020, Khalvati et al. 2024, 
Baumann et al. 2022, Barsanti et al. 2023, Zhang et al. 2023, Tomaselli 
et al. 2024, Cole et al. 2023, Speri et al. 2023, Duque et al. 2024, 
Coppaoni et al. 2025…)


• Tests of General Relativity (Han & Chen 2019, Gupta 
et al. 2022, Speri et al. 2024, Kejriwal et al. 2024, A. Cardenas-
Avendano & Sopuerta 2024)

Credit: NASA19



Dark dress Accretion disk Gravitational  
atom

M = r/h
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Credit: Sophia Dagnello, NRAO/AUI/NSF

Cold, collisionless dark matter Baryonic matter Ultra-light bosons

Eda et al. 2013, 2014

Gondolo, Silk 1999


Kavanagh et al. 2020

Coogan et al. 2021

Goldreich & Tremaine 1980
Tanaka 2002

Derdzinski et al. 2020

Baumann et al. 2019

Arvanitaki & Dubovsky 2010

Bauman et al. 2021, 2022

M = r/h
Mass of light scalar field 


( )10−10 − 10−20 eV
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Binary loses energy due to gravitational waves, 
additional losses due to the environments

21 Cole et al. 2023

Dynamical friction 

Gas torques 

Ionisation



-

The information is within the waveforms to be able to measure the 
parameters of, and distinguish between, different environments.

Accretion disk 

Dark dress

Gravitational atom

Cole et al. 2023 Nat Astron (2023). arXiv:2211.01362
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Accretion disk signal Dark dress signal Gravitational atom signal

Vacuum 
template

-

Biases possible if these effects not included in parameter estimation

23 Cole et al. 2023



-

Confidently distinguish between different environments 
(and vacuum) with full Bayesian model comparison

Cole et al. 2023

24

Dark dress signal Accretion disk 
signal

Gravitational 
atom signal

Vacuum template 34 6 39

Dark dress 
template - 3 39

Accretion disk 
template 17 - 33

Gravitational 
atom template 24 6 -

log10 ℬ

Injection

Recovery

See also Hanneksula et al. Nature Astronomy, 2019



Also possible with accretion disk + dark matter simultaneously present

25

Nicole Grillo MSc thesis 2025

Measure non-zero density 
normalisations of both 
with correct template

Bayes factor prefers 
combined model 
significantly with respect 
to recovery with single 
environments 

Recovery with accretion 
disk only

Recovery with dark 
matter spike only

Recovery with correct 
combined model



Why should we care about environmental 
effects?

• We have a chance to learn about the environment itself (which 
could involve dark matter) via the dephasing in the waveform.


• If we search the data without including these effects we might 
miss the signal.


• If we do parameter estimation with the ‘wrong’ model, results 
will be biased.

26 See also Barausse, Cardoso, Pani 2011



Can we do this in practice?

27

Need to include (non-exhaustive list):


• Eccentricity


• Relativistic effects


• Detector response


• Noise


• Spins


• Higher order environmental effects


• Overlapping signals


• Other sources - global fit



Can we do this in practice?
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running

“Running before you can walk”

Need to include (non-exhaustive list):


• Eccentricity


• Relativistic effects


• Detector response


• Noise


• Spins


• Higher order environmental effects


• Overlapping signals


• Other sources - global fit



Can we do this in practice?
“Running before you can walk”
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running

walking

Schwarzschild 
vacuum EMRIs 
(produced with 
FEW v1) with 

detector response 
and noise

Need to include (non-exhaustive list):


• Eccentricity


• Relativistic effects


• Detector response


• Noise


• Spins


• Higher order environmental effects


• Overlapping signals


• Other sources - global fit



Training set-up
PEREGRINE-style approach - Truncated Marginal Neural Ratio Estimation

• Mappings are learnt marginally, e.g. 1d or 2d as opposed to full joint posterior


• Simulation efficient, and could be an interesting approach when nuisance 
parameters present/re-introduced

ℒ[ ̂ρk,ϕ] = − ∫ {p(x, θk)ln σ( ̂ρk,ϕ(x, θk)) + p(x)p(θk)ln [1 − σ( ̂ρk,ϕ(x, θk))]} dx dθk .

Miller et al. 2020, Miller et al. 2021



Differential evolution, with optimisation over SNR, 
performs better than the likelihood

31 Strub et al. 2025



Narrowing down parameter space

• Works particularly well for intrinsic parameters


• Here larger primary mass, and even wider priors

32



Training details

• Embedding network: linear transformation (Ax + b), normalisation across 
batch, ReLu ReLU(x)=max(0,x) with decreasing dimensions


• U-net (CNN): extracts both complex and simplistic features


• Stack the features from different channels


• Residual Net: Actual training of log-ratios, monitor binary cross-entropy loss 
function with AdamOptimizer

33



Training set-up
PEREGRINE-style approach
• 150K simulations per round


• Batch size = 128


• Initial learning rate = 


• Training:validation - 90:10


• Early stopping criterion: 7 epochs


• Utilise noise shuffling


• Bounding threshold = 


• Unet (CNN for compression -> reconstruction) -> Linear compression (MLP, each layer linear) -> Logratio 
estimator (ResNet): input 16 features, 11 parameters, dropout = 0.1


• O(20K) parameters in the logratio estimator (residual network)


• 2 residual blocks (4 hidden layers), 64 hidden features

10−4

10−5

Bhardwaj et al. 2023

Miller et al. 2021
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2d marginals with TMNRE

• Intrinsic parameters consistent

35



2d issues with TMNRE

• Some other 2d marginal 
distributions inconsistent with 1d 
distributions

36



FEW details

• Phase and amplitude of each mode computed up to 1st order in gravitational 
self-force theory (expansion of the metric of the binary in powers of mass 
ratio).


• Modes summed over to produce adiabatic waveform  in 
time domain.

h(t) = h+(t) − ih×(t)
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