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What'’s special about extreme mass ratio inspirals?

* A binary black hole system with
mass ratio ¢ = m,/m; < 10~

* Rich dynamics due to eccentric
orbits, spin precession and
thousands of excited harmonics

* |ong duration gravitational wave
signals - could remain in LISA
band for years - opportunity to
observe millions of cycles —

Berry et al. 2019
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Many astrophysics and fundamental physics opportunities...

e Formation of intermediate mass black
holes

* Environmental effects - dark matter, ultra-
light bosons, accretion disks around
primary object

» Tests of General Relativity

...If we can measure the parameters to very high precision

4 Credit: NASA



Even in vacuum, EMRIs have complicated waveforms that evolve
significantly in time - enables precision measurement but expensive
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https://arxiv.org/abs/1602.03837

Potential for extremely precise parameter measurements

Liang et al. arXiv:2409.07957

Corner Plot

Posterior Distributions
True Value

« Some parameters can theoretically
be measured to a precision of e.qg.
0.01% (eccentricity), 0.003%

primary mass), 0.005% (secondary
mass

 Example of MCMC run initiated ver
close to the true injected values
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Potential for extremely precise parameter measurements

Liang et al. arXiv:2409.07957
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* Precision required for new physics
Inferences
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Vast and multi-modal parameter space

« However the EMRI parameter
space Is vast, making search
and parameter estimation
strategies extremely difficult

* [here are also many
degeneracies between
parameters, so the parameter
landscape is highly multi-modal

e Prior width on just the mass is a
factor of 10° larger than
posterior

See e.g. Chua & Cutler arXiv:2109.14254

- Posterior distribution
Potential precision
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EMRIs in the milliHertz frequency band will be buried In
non-stationary, non-Gaussian noise
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How and why sequential simulation-based inference might help

1. Simulation-efficient way to narrow down a vast and multi-modal parameter
space (important because EMRI simulations are also relatively expensive)

2. Future goal will be to cope with non-stationary, non-Gaussian noise (as well
as many overlapping sources), where likelihood-based methods tend to
become expensive or unfeasible
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Sequential simulation-based inference at a glance

Round n=0

Simulate — WG )( m— Estlmgte — Trur_mate
posterior prior?

\/ No

Yes - start new round n+1

Convergence

Bhardwaj et al. 2023



1e-20

Simulation set-up bk
» Signal simulated with Fast EMRI 5 O ™
Waveforms (FEW) code (version 1) :

 Fed through fastlisaresponse WJ\AMM

which implements the LISA

—1.21

detector response in time domain 4 Noise, m
and outputs the signal projected L T
onto the ‘A’, 'E’ and T’ time delay time [days!
interferometry channels o5 = s o
 Add noise sampled from the
power spectral density as
computed by pycbc (analytical
including confusion noise)

10—47 i
dt =10s,T,,, = 0.1 yr,m; = 5.385 x 10° My, m, = 50.55 Mg, py = 10.35 ¢y = 0.2927, cos 6 = 0.0384, ¢ = 5.212,d, = 232.8 Mpc, @, = 2.966, ®, = 2.014, cos O = 0.4107, ¢pg = 3.124
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Training set-up P E R EG R | N E

PEREGRINE-style approach - Truncated Marglnal Neural Ratlo Estlmatlon

» Train a neural network to recognise whether parameter vector 6, and signal x
are drawn jointly p(x, 6,) or marginally p(x)p(6,) - binary classification

 Minimise the binary-cross entropy loss function:

Lyl = - J{poc, 00N 074X, 0) + PCOPEIIN |1 = 0(py 4(x, 6,) | } dx B

« Optimal classifier ﬁkaqﬁ(x, 0,) is the log of the likelihood-to-evidence ratio - re-
weight by prior samples to estimate the posterior

Likelihood Jointly drawn samples Posterior

" p(x | V) _ p(x, Or) B p(F% | @)
e P(@) : P(x)p(D%) B p(¥%) Bhardwaj et al. 2023

Evidence ;Marginally drawn samples Prior Miller et al. 2021




Effectively narrows down parameter space

between rounds

et al. 2025)
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Parameter space for intrinsic parameters narrowed significantly via truncation

Proposal distribution volume a million times smaller than prior volume

Differential evolution (stochastic optimiser) performs less well (however see Strub




Posteriors/proposal distributions
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Posteriors/proposal distributions
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Comparison with MCMC

Compare efficiency by
choosing like-for-like
starting states

MCMC prior chosen to be

the 6th round prior
identified with TMNRE

32 walkers and 4687 steps
~ waveform evaluations
approximately 150K

2 days wall-clock time
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Conclusions

« TMNRE narrows down parameter space volume (by a factor of a million) very
efficiently from wide priors

* Estimates proposal distributions that are better converged than MCMC when
compared with same number of waveform evaluations and starting states

e |mprovements required in order to achieve precise parameter measurements -

use output as proposal distributions, compress data offline, non-uniform
truncation methods

* Eventually tackle non-stationary, non-Gaussian noise and overlapping sources

« How and when do we fold back in environmental effects to the data analysis
pipeline?

18



Many astrophysics and fundamental physics opportunities...

e Formation of intermediate mass black
holes

* Environmental effects - dark matter, ultra-
light bosons, accretion disks around
primary object

» Tests of General Relativity

...If we can measure the parameters to very high precision

19 Credit: NASA



Dark dress

Cold, collisionless dark matter

Dark Matter 'spike’

Eda et al. 2013, 2014
Gondolo, Silk 1999
Kavanagh et al. 2020
Coogan et al. 2021

Accretion disk

Gravitational
atom

Ultra-light bosons

Baryonic matter

—1/2

sy =5 (2) 7 P = Melp ()P
"o o = Gmlu <1

Mass of light scalar field
(10710 — 10" eV)

Baumann et al. 2019
Arvanitaki & Dubovsky 2010
Bauman et al. 2021, 2022

Credit: Sophia Dagnello, NRAO/AUI/NSF

M =rlh

Goldreich & Tremaine 1980
Tanaka 2002
Derdzinskéoet al. 2020



Binary loses energy due to gravitational waves,
additional losses due to the environments
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The information i1s within the waveforms to be able to measure the
parameters of, and distinguish between, different environments.
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Biases possible if these effects not included in parameter estimation

Accretion disk signal

Dark dress signal

Gravitational atom signal

Vacuum
template
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Confidently distinguish between different environments
(and vacuum) with full Bayesian model comparison
Injection

: Accretion disk Gravitational
log;g A Dark dress signal . .
signal atom signal
rocuum tempiate _

Dark dress
Accretion disk 17 33
template
Gravitational 54
atom template Cole et al. 2023

24 See also Hanneksula et al. Nature Astronomy, 2019




Also possible with accretion disk + dark matter simultaneously present

Measure non-zero density
normalisations of both
with correct template
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Why should we care about environmental
effects?

* We have a chance to learn about the environment itself (which
could involve dark matter) via the dephasing in the waveform.

* [f we search the data without including these effects we might
miss the signal.

* [f we do parameter estimation with the ‘wrong’ model, results
will be biased.

See also Barausse, Cardoso, Pani 2011



Can we do this in practice?

Need to include (non-exhaustive list):

Eccentricity

Relativistic effects

Detector response

Noise

Spins

Higher order environmental effects
Overlapping signals

Other sources - global fit

27



Can we do this in practice?

“Running before you can walk”

Need to include (non-exhaustive list):

Eccentricity

Relativistic effects

Detector response

Noise

Spins

Higher order environmental effects
Overlapping signals

Other sources - global fit

running
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Can we do this in practice?

“Running before you can walk”

Need to include (non-exhaustive list):

Eccentricity

Relativistic effects

Detector response

Noise

Spins

Higher order environmental effects
Overlapping signals

Other sources - global fit

walking

29

running

Schwarzschild
vacuum EMRIs
(produced with
FEW v1) with
detector response
and noise



Training set-up P E R EG R l N E

PEREGRINE-style approach - Truncated Marglnal Neural Ratlo Estlmatlon

 Mappings are learnt marginally, e.g. 1d or 2d as opposed to full joint posterior

o Simulation efficient, and could be an interesting approach when nuisance
parameters present/re-introduced

Pyl = - [{mx, 00N (45, 0) + POPOIN |1 = 6(py (¥, 6) |} dx )

Samples required for eggbox problem
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Differential evolution, with optimisation over SNR,
performs better than the likelihood
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Strub et al. 2025



 Works particularly well for intrinsic parameters

* Here larger primary mass, and even wider priors
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Narrowing down parameter space




Training details

 Embedding network: linear transformation (Ax + b), normalisation across
batch, ReLu RelLU(x)=max(0,x) with decreasing dimensions

 U-net (CNN): extracts both complex and simplistic features
e Stack the features from different channels

* Residual Net: Actual training of log-ratios, monitor binary cross-entropy loss
function with AdamOptimizer

33



Training set-up
PEREGRINE-style approach

rPEREGRINE

150K simulations per round
Bhardwaj et al. 2023

Batch size = 128 Miller et al. 2021

Initial learning rate = 10~
Training:validation - 90:10
Early stopping criterion: 7 epochs

Utilise noise shuffling

Bounding threshold = 107

Unet (CNN for compression -> reconstruction) -> Linear compression (MLP, each layer linear) -> Logratio
estimator (ResNet): input 16 features, 11 parameters, dropout = 0.1

O(20K) parameters in the logratio estimator (residual network)

2 residual blocks (4 hidden layers), 64 hidden features

34



2d marginals with TMNRE

* [ntrinsic parameters consistent
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th TMNRE

2d Issues w

TMNRE
MCMC

- Injected valtes

-

\
A - |

" .
P e— | (3 !
— - f -~ . {
R % . |
L §
’

L
>

'
|
1 }
— < A !

P wd l )
= L o) | g |
B & A |
1 |

A _

———Ay———

G

3/

Y \ g 4 Y
™ 4 S &
\A. Qwv uu,\n .{\n

9. 01w

Y n S
AT

6,%0.%

v 2y
(W] o1
I

 Some other 2d margina

Istent with 1d

IONS INCONSIS

distribut
distributions

v v v

v
o, 5 0 o

-

(pea)

s

G v S fa §

[2d9] PoO1

Ipes] %

[pex] ¢

“

O, P A D
S

(pea) 5

580, e, O,
000 Ao

‘purs

¢ [rad]

/10 [M]

my/10 Mg ]

m10° [Ms]

(o)
™



FEW details

 Phase and amplitude of each mode computed up to 1st order in gravitational
self-force theory (expansion of the metric of the binary in powers of mass
ratio).

» Modes summed over to produce adiabatic waveform h(t) = h_ (1) — ih,(¢) in
time domain.
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