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Pulsar timing arrays

| RO~
. : | . ROTATION
* Measure timing series from a set of . . ; AXIS B
millisecond pulsars. 2 Ty, BEAM

 GWs induce noise in that is
correlated between pulsars.
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Strong evidence for a GW background at PTAs

INANOGrav, Apd. Lett. 951 (2023)]
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Cosmological sources

Scalar-induced GWs
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Characteristic Strain

GWs from phase transitions
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Black hole binaries

Characteristic Strain
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SMBH GW background
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- Solid and dashed curves: two realizations of the background.
* Violins: distribution of the possible realisations.
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Sources that make 50% of the signal:
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SMBH GW background

[Ellis et. al., PRD 109 (2023); A&A 676 (2023)]
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P(Q) has a shallow power-law tail,
caused by nearby binaris,

central limit theorem does not hold,

PDF of €2, is not Gaussian.
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PTA fit: GW driven binaries

Best fit merger
efficiency:

Pry ~ 0.1




Low-frequency suppression

Environmental effects Eccentricities
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 Shorter residence time:
At digy fow  Signal frlc;.mI S|fngle binary spreads
dlnf, _ dInf, -~ over multiple frequencies.

e GW emission circularises binaries.
e GW-driven evolution takes over

at small separations.



PTA fit: low-frequency suppression

env. effects at f 2 SnHz

10- 4 [Raidal, Urrutia, Vaskonen and Veermae, A&A 691 (2024), arXiv:2406.05125]
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Anisotropies

[Raidal, Urrutia, Vaskonen and Veermae, arXiv:2411.19692]

1 " GWonly = GW+env ® GW+ecc Sources that make 50% of the signal:
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Summary

1. The PDF of SMBH GWB realizations has a power-law tail,
P(Q) «x Q™2 arising from the possibility of having nearby sources.

2. The PTA GW spectrum shape indicates either strong environmental
effects or highly eccentric binaries.

3. Spectral fluctuations and anisotropies provide a way to distinguish
SMBH origin of the PTA signal from cosmological sources.



