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Pulsar timing arrays

• Measure timing series from a set of 
millisecond pulsars.


• GWs induce noise in that is 
correlated between pulsars.

NANOGrav pulsars

EPTA NANOGrav

PPTA
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Common spectrum red noise       +      Hellings-Downs angular correlations

Strong evidence for a GW background at PTAs 

[NANOGrav, ApJ. Lett. 951 (2023)]
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mPBH ∼ 0.1M⊙

mPBH ∼ 10−8M⊙

mPBH ∼ 10−15M⊙

T* ∼ 0.01 GeV

T* ∼ 103 GeV

T* ∼ 108 GeV

Scalar-induced GWs GWs from phase transitions

cosmic strings, domain walls etc.

β/H = 12fPBH ∼ 1

Cosmological sources
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z = 1

solid: last 4 yr,

dashed: last  yr106

Black hole binaries
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SMBH GW background

Sources that make 50% of the signal:
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• Solid and dashed curves: two realizations of the background.

• Violins: distribution of the possible realisations.

  where  Ωtot( fi) = ∑
j

Ω(1)
GW,j Ω(1)

GW ∝ (ℳf )10/3D−2
L
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P(1)(Ω) ∝ ∫ dλ
dt

d ln fr
δ(Ω − Ω(1))

∝ Ω−5/2

[Ellis et. al., PRD 109 (2023); A&A 676 (2023)]
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 has a shallow power-law tail, 
caused by nearby binaris, 


central limit theorem does not hold,


PDF of  is not Gaussian.

P(1)(Ω)

Ωtot

PDF of Ωtot
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PTA fit: GW driven binaries

Best fit merger 
efficiency:


 pBH ≈ 0.1
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Low-frequency suppression
Environmental effects Eccentricities

dEn

dtr
=

dEcirc

dtr
gn(e) , ℱ(e) =

∞

∑
n=1

gn(e) > 1

• Shorter residence time:


• Signal from single binary spreads 
over multiple frequencies.


• GW emission circularises binaries.

• Shorter residence time:


• GW-driven evolution takes over 
at small separations.

dt
d ln fb

=
dtGW

d ln fb [1 +
tGW

tenv ]

dt
d ln fb

=
dtcirc

d ln fb
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GW only
GW+env
GW+ecc
NG15
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PTA fit: low-frequency suppression
[Raidal, Urrutia, Vaskonen and Veermäe, A&A 691 (2024), arXiv:2406.05125]

large eccentricities,  e ≳ 0.6

pBH =0.44-0.17+0.33
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Anisotropies
[Raidal, Urrutia, Vaskonen and Veermäe, arXiv:2411.19692]
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Sources that make 50% of the signal:
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Summary

1. The PDF of SMBH GWB realizations has a power-law tail, 
,  arising from the possibility of having nearby sources.


2. The PTA GW spectrum shape indicates either strong environmental 
effects or highly eccentric binaries.


3. Spectral fluctuations and anisotropies provide a way to distinguish 
SMBH origin of the PTA signal from cosmological sources.

P(Ω) ∝ Ω−5/2


