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Gamma Rays
Context: Indirect Detection of WIMPs
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Secondary 
particles

Gamma rays, 
neutrinos, 

cosmic rays 
(CRs)

DM 
particles

DM 
annihilation

SM particles
Quarks, bosons, 

leptons…

Observatories

mDM ≃ 𝒪(GeV − TeV )

CTAO - LST 1

MAGIC Telescopes



• Annihilation channels: SM particles 
created from the annihilation


• : velocity-averaged annihilation 
cross-section, to explain the measured 
thermal relic density 

⟨σv⟩

ΩDM ≃ 0.27
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DM 
particles

DM 
annihilation

SM particles
Quarks, bosons, 

leptons…

DM WIMPs Indirect Detection
dΦDM

dE
=

⟨σv⟩
8πm2

DM

channels

∑
i

BRi
dNi

dE
J(ΔΩ)

Main Formula: Annihilation Flux

⟨σv⟩th ≃ 3 × 10−26cm3s−1

•  : annihilation prompt emission of 
gamma rays


•  J-factor: information on the DM 
density distribution, astrophysical 
parameter

dN
dE

J(ΔΩ)
mDM ≃ 𝒪(GeV − TeV )



• Prompt production spectra  
computed with PPPC4DMID


• J-factor: DM density profile

dN
dE
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DM Annihilation Flux

[M.Cirelli et al. 2011]

dΦDM

dE
=

⟨σv⟩
8πm2

DM

channels

∑
i

BRi
dNi

dE
J(ΔΩ)

J(ΔΩ) = ∫ΔΩ
dΩ∫

l( ̂θ)max

l( ̂θ)min

ρ2
DM[r(l)]dl( ̂θ)

JZP, V. Gammaldi & M. Sánchez-Conde, in preparation 



Type Distance DM mass Astrophysical 
background DM density profile

Galactic Center 
(100 pc)

Important, 
difficult to model

(Sources + CRs)

Weak constraints

Dwarf Spheroidal 
Galaxies (dSph) Negligible Pressure 

dominated

Galaxy Clusters Production from 
CRs

Smooth + subhalos 
population

dIrrs Negligible? Rotation 
dominated

Comparison with other DM Targets
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∼ 8.5 kpc ∼ 107 M⊙

< 0.5 Mpc

> 0.5 Mpc

> 10 Mpc

107 − 109 M⊙

1014 − 1015 M⊙

109 − 1010 M⊙
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γspike

CTAO North: IC10, IC1613CTAO South: WLM, NGC6822, IC1613

PRELIMINARY

Targets chosen following best candidates from previous works

JZP, V. Gammaldi & 
M. Sánchez-Conde, 

in preparation Galactic coordinates



• 36 candidates analysed


• Negligible astrophysical 
background (MeV-GeV) 
compared to the DM annihilation 
flux, similar to dSphs


• Upper limits already computed 
with Fermi-LAT,  worse 
constraints than dSphs


• What about the GeV-TeV energy 
range?

∼ 𝒪(10)
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DIrrs Theoretical Predictions
Intrinsic Astrophysical Emission Gammaldi et al., 2018

[Gammaldi et al., 2021]
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Gamma-ray Intrinsic Astrophysical Emission
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PRELIMINARY

JZP, V. Gammaldi & M. Sánchez-Conde, 
in preparation • For , the integrated DM flux 

is greater than the SFR emission by 

• At , the flux is of the same 

order

• Similar behavior for the 4 dIrrs

• Power-law with spectral index 

• High uncertainty in the normalization 

(  orders of magnitude)

mDM ≲ 10 TeV
𝒪(10)

mDM ≳ 60 TeV

γ = 2.5

∼ 2

Star-Forming Region (SFR) emission
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PRELIMINARY

Gamma-ray Intrinsic Astrophysical Emission

• The main parameter is the star 
formation rate


• Big uncertainties: we choose the 
middle point, but an in-depth study 
is performed discussing the SFR 
emission detection


• Spatial extension: the optical size 
of the galaxy ( ) θopt ∈ (0.04∘ − 0.13∘)

Star Formation Rate [M⊙ /yr]

SFR emission



Spatial Distribution: J-Factors
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• SFR emission: depending on the 
uncertainty, can be of the some 
order than DM flux


• DM flux:  
channels


• Galactic diffuse emission (GDE): 
greater than the rest of the fluxes


bb̄, τ+τ−, ZZ, W+W−

[M.Cirelli et al. 2011]

Integrated up to scale radius rs

-optimized Max model: 
P. de la Torre Luque et al., 2023
γ

PRELIMINARY



The Cherenkov Telescope 
Array Observatory (CTAO)

• Array of 64 telescopes: unprecedented flux and 
angular sensitivity (Alpha configuration)


• With 2 locations: full sky coverage

• South sky: Cerro Paranal, Chile


• 37 Medium-Sized Telescopes (MSTs)

• 14 Small-Sized Telescopes (SSTs)


• North sky: La Palma, Spain

• 4 Large-Sized Telescopes (LSTs)

• 9 MSTs


• Currently under construction phase

• With the Alpha configuration, we simulate 50h of 

observation per target
12CTAO  LST-1
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SFR Emission Detection?

• Required flux for a  hint or  
detection


• The flux needed is about 1 to 3 
orders of magnitude above the 
highest flux allowed by the 
uncertainty of our modeling


• DIrrs are not expected to be 
detected by CTAO as astrophysical 
sources

3σ 5σ

No DM signal simulated

PRELIMINARY
TS = − 2 log

ℒnull(θSFR = 0,θbkg |n)

ℒbest−fit( ̂θSFR, ̂θbkg |n)
≃ σ2

St
ar
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rm

at
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n
R

at
e

[M
⊙
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DM constraints: spatially 
extended DM-only analysis TS = − 2 log

ℒ95%(⟨σv⟩95%, θ95% |n)

ℒbest−fit( ̂⟨σv⟩, ̂θ |n)
= 2.71

Excluded

PRELIMINARY

In the absence of detection, we set constraints

•  
uncertainties 
from 
poissonian 
noise


• We average 
over 100 
simulations

1σ & 2σ



102 103 104 105

mDM [GeV]

10°26

10°25

10°24

10°23

10°22

10°21

10°20

10°19

10°18

hæ
vi

[c
m

3
/s

]

hævithBurkert-MIN
DM + AE, ø+ø°

102 103 104 105

mDM [GeV]

hævithBurkert-MED
DM + AE, ø+ø°

WLM

NGC6822

IC10

IC1613-South

IC1613-North

Combined

102 103 104 105

mDM [GeV]

hævithNFW-MED
DM + AE, ø+ø°

15

Full DM analysis: extended DM 
& Astrophysical Emission TS = − 2 log

ℒ95%(⟨σv⟩95%, θ95% |n)

ℒbest−fit( ̂⟨σv⟩, ̂θ |n)
= 2.71

Excluded

PRELIMINARY

In the absence of detection, we set constraints

•  
uncertainties 
from 
poissonian 
noise


• We average 
over 100 
simulations

1σ & 2σ
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Comparison between channels

• Best results for 
 channel and 

Burkert-MED

• Burkert profile: 

dominates IC10

• NFW profile: 

dominates 
NGC6822

τ+τ−

TS = − 2 log
ℒ95%(⟨σv⟩95%, θ95% |n)

ℒbest−fit( ̂⟨σv⟩, ̂θ |n)
= 2.71

Excluded

PRELIMINARY
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Comparison with other constraints

PRELIMINARY
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JZP, V. Gammaldi & M. Sánchez-Conde, 
in preparation 

50h of observation per target
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Conclusions
• We do not expect to detect dIrrs as astrophysical sources (SFR emission) 

in gamma rays with CTAO, Star Formation Rate needed 


• 2 galaxies dominate the DM constraints: IC10 and NGC6822


• Very similar results with the inclusion/exclusion of the AE, like dSphs


• Complementary and competitive results compared to e.g. CTAO’s 
constraints from Perseus Galaxy Cluster

∼ 1 M⊙/yr



Thank you for your time!
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• Low uncertainties

• Subhalos: an extra boost 

factor 
∼ 5
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Comparison with DSphs
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γ

• Spectra for the Milky Way 
Diffusion Emission when 
pointing to the galaxies chosen


• GDE computed with DRAGON: 
-optimized Max model


• This model features a spatial 
dependent diffusion coefficient

γ

21

PRELIMINARY

Galactic Diffuse Emission (GDE): Milky Way Contribution



22

GDE detection? −2 log
ℒnull(⟨σv⟩ = 0,θ |n)

ℒbest−fit( ̂⟨σv⟩, ̂θ |n)
≃ σ2
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• The modeling is based computing the Star Forming Rate of each galaxy with 
its stellar mass ( )M*

Spectral Modelling: SFR Emission

23

γ

SFR gamma-ray luminosity: 
P. Martin 2014

PCR ∝ Star Forming Rate

• With the star formation rate estimated, the gamma-ray flux is given by:

dΦ
dE

∝ E−2.5

Normalization

Differential Flux

Star formation rate estimation: S. McGaugh, J. Schombert & F.Elli 2017

Gamma-ray Intrinsic Astrophysical Emission

log(Star Formation Rate [M⊙/yr]) = − 10.75 ± 0.53 + 1.04 ± 0.06 log(M*/M⊙) ± 0.34

log(Lγ[erg/s]) = β log(PCR) + δ



Spectral Modelling: SFR Emission
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Gamma-ray Intrinsic Astrophysical Emission

Galaxy Star formation rate
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WLM IC10 IC1613 NGC6822
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DM profiles from FermiLAT 2021 

ρNFW(r) =
ρs

( r
rs

)(1 + r
rs

)2
ρBur(r) =

ρs

(1 + r
rs

)(1 + ( r
rs

)2)

[Gammaldi et al. 2021]



Subhalo Population Parameters

• Subhalo Radial Distribution :    

follow main halo (with scale radius )


• Subhalo Mass Function 


• Concentration-mass relation : 
kMOLINE17_200 


• Subhalo Concentration Distribution :    
no scatter considered

dPV

dV
10 × rs

dPM

dM
∝ M−α

c − M

dPc

dc

d3N
dVdMdc

= Ntot
dPV

dV
(R)

dPM

dM
(M)

dPc

dc
(M, c)

Model Burkert-MIN Burkert-MED NFW-MED

Main Halo Burkert Burkert NFW

# of sublevels 0 2 2

Subhalo - NFW NFW

SRD - Burkert NFW

SHMF -

26

α = 1.9 α = 1.9
[A. Moliné et al. 2017]

Following FermiLAT 2021 and CTAO Perseus Paper
[V. Gammaldi et al. 2021] [R. Adam et al., CTAO 

collaboration, 2023]



Spatial Distribution: J-Factors

NGC6822 

27

IC1613 

WLM

IC10
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Main Objectives

1. Astrophysical emission: detectability prospects of dIrrs as astrophysical sources


2. WIMP DM: detectability prospects and benchmark  upper limits


2.1.Spatially extended DM-only analysis:                                                                                              
only modeling of the DM annihilation emission, as in previous works 


2.2.Full analysis: extended DM & Astrophysical Emission:                                                                                  
DM annihilation + SFR emission + GDE

⟨σv⟩

ℒ(μ |n) = ∏
i,j

e−μi, j
μni, j

i,j

ni,j!

Template Analysis, 50h observation per target



Pipeline based on gammapy v1.2
Methodology

29

Note:

Given the Poissonian statistics of the 
counts simulation, for each modeling 
100 simulations are performed

ℒ(μ |n) = ∏
i, j

e−μi, j
μni, j

i, j

ni, j!

• CTAO’s Instrument 
Response 
Functions (IRFs): 
prod5 v0.1

• Spectral and 
Spatial templates

• Instrumental CR 
Background

Simulation of 
the counts ( )n

Template analysis: 
expected counts ( ) from 

the models to test
μ

Observed 
counts map

Sensitivity 
prospects

−2 log
ℒ95%(⟨σv⟩95%, θ95% |n)

ℒbest−fit( ̂⟨σv⟩, ̂θ |n)
= 2.71

−2 log
ℒnull(⟨σv⟩ = 0,θ |n)

ℒbest−fit( ̂⟨σv⟩, ̂θ |n)
≃ σ2

Detection of the signal

Upper limits



Simulation Setup
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• Sky simulation, observation simulation and statistical analysis: pipeline based on Gammapy (v1.2) 
• Angular binning: sky map with grid 0.02º

• Energy binning: 10 bins logarithmically spaced between 20 GeV and 150 TeV

• Observations: 50h of observation time per target

• IRFs:  

• North site: Prod5-North-20deg-AverageAz-4LSTs09MSTs.180000s-v0.1

• South site: Prod5-South-20deg-AverageAz-14MSTs37SSTs.180000s-v0.1


• Statistical consistency: 100 realizations per observation (similar to the KSP Perseus Paper)

• Template analysis:

ℒ(μ |n) = ∏
i,j

e−μi, j
μni, j

i,j

ni,j!



CTAO Sensitivity
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https://www.ctao.org/es/for-scientists/performance/
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• Burkert-MED


• Instrumental CR 
background 
dominates the 
counts



Gamma-ray Simulation: Spectral Counts
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PRELIMINARY

• Burkert-MED


• Instrumental CR 
background 
dominates the 
counts
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DM Detection prospects
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Assuming thermal relic ⟨σv⟩th

No significant detection in any of the cases



Individual Constraints: Poissonian Uncertainties

35

500 1000 1500 2000
hævi [£3 · 10°26 cm3 s°1]

0

5

10

15

20

25

C
ou

nt
s

NGC6822: DM + AE
ø+ø°, mDM = 4213 GeV

NFW-MED

Lorentzian fit

Upper Limit

1æ

2æ

We make 100 simulations in 
order to get the statistical 
behavior of the “real” 
observation (lorentzian 
probability distribution function)

PRELIMINARY

TS = − 2 log
ℒ95%(⟨σv⟩95%, θ95% |n)

ℒbest−fit( ̂⟨σv⟩, ̂θ |n)
= 2.71
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• Representative TS profile: from 
the 100 realizations, we 
compute the median


• Good agreement between the 
median and the estimated 
Upper limits

TS = − 2 log
ℒ95%(⟨σv⟩95%, θ95% |n)

ℒbest−fit( ̂⟨σv⟩, ̂θ |n)
= 2.71

PRELIMINARY



From Individual to Combined
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• Representative TS profile: from 
the 100 realizations, we compute 
the median


• From each individual TS profile, 
we can compute the combined 
profile
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= 2.71

PRELIMINARY
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TS = − 2 log
ℒ95%(⟨σv⟩95%, θ95% |n)

ℒbest−fit( ̂⟨σv⟩, ̂θ |n)
= 2.71

PRELIMINARY

Excluded

JZP, V. Gammaldi & M. Sánchez-Conde, 
in preparation 
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Comparison between the 
approaches

• Very similar 
results with and 
without 
astrophysical 
emission, like 
the case of 
dSphs

TS = − 2 log
ℒ95%(⟨σv⟩95%, θ95% |n)

ℒbest−fit( ̂⟨σv⟩, ̂θ |n)
= 2.71

Excluded

PRELIMINARY
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Comparison between the profiles

Excluded

PRELIMINARY

• Best results with the Burkert profile 
(MIN & MED)

• With Burkert dominates IC10, but 

in that galaxy the sub-halos are 
not important


• Extending up to 600h (only IC10 
and NGC6822) improves all 
constraints a factor of 



• Very similar results between DM-

Only and DM+AE

∼ (300/50)−1/2 = 6−1/2

Combined results
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Constraints: comparing with CTAO dSphs
• Choosing our 2 best 

targets: NGC6822 
and IC10


• 600h of observation 
time between them 
(like dSph KSP)


• Factor of a few 
above dSphs limits

PRELIMINARY



• In the typical WIMP scenario (first order approximation):

• Annihilation through an effective velocity-independent interaction (s-wave)

• Therefore  is independent of : the integral of  is the DM density profileσanvrel vrel f ( ⃗vi)

• In general, the DM annihilation cross-section can be expanded as a function of the 
relative velocity between the DM particles ( ):vrel

42

DM Annihilation Rates

σan(vrel)vrel = σs−wave(vrel)c + σp−wave(vrel)c(vrel /c)2 + 𝒪((vrel /c)4)

dNann

dVdt
= Γ( ⃗r ) = ∫ f ( ⃗r, ⃗v1) f ( ⃗r, ⃗v2)

σan(vrel)vrel

2
d3 ⃗v1d3 ⃗v2

Γ( ⃗r ) = ∫ f ( ⃗r, ⃗v1) f ( ⃗r, ⃗v2)
σs−wavec

2
d3 ⃗v1d3 ⃗v2 =

⟨σs−wavevrel⟩
2 ∫ f ( ⃗r, ⃗v1)f ( ⃗r, ⃗v2)d3 ⃗v1d3 ⃗v2 =

⟨σs−wavevrel⟩
2

ρ2
DM( ⃗r )
m2

DM

• The annihilation rate is given by (Majorana DM) in a given point :⃗r
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[T. Lacroix et al. 2022]

Huge enhancement of the J-factor 
up to 𝒪(108)

No 
enhancement

ϵϕ =
mϕ

αDmDM

• We focus on the s-wave case (p-wave have less restrictive 
constraints)


• Sommerfeld enhancement: light scalar  mediator between 
DM and Standard Model particles


• A light mediator mass ( ) leads to a long-range interaction


• It can distort the wave function of the two-body system in a 
non-perturbative way

ϕ

mϕ

Constraints: Sommerfeld enhancement

JS(ΔΩ) = ∫ΔΩ
dΩ∫l.o.s.

ds∫ d3 ⃗v1 ∫ d3 ⃗v2 f (r(s, Ω), ⃗v1) f (r(s, Ω), ⃗v2) 𝒮 ( vrel

2 )

• When   depends on , we can define a generalized 
J-factor

σan( ⃗vrel) ⃗vrel

Where  has the dependencies of 𝒮 ( vrel

2 ) σan(vrel)

• Coupling  to the DM and Standard Model particlesαD

αD = 0.01
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Constraints: Sommerfeld enhancement

Colored: excluded PRELIMINARY

• Ruled out parameter space 
assuming 


• s-wave results (p-wave are 
less restrictive constraints)


• Rescaled results for the 
Burkert-MED case

⟨σv⟩th

ϵϕ =
mϕ

αDmDM
αD = 0.01

dΦDM

dE
=

(σc)0

8πm2
DM

channels

∑
i

BRi
dNi

dE
JS(ΔΩ)
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Constraints: Sommerfeld enhancement
• Ruled out parameter 

space assuming 

• s-wave results (p-wave 

are less restrictive 
constraints)


• Rescaled results for the 
Burkert-MED case

⟨σv⟩th

ϵϕ =
mϕ

αDmDM
αD = 0.01

dΦDM

dE
=

(σc)0

8πm2
DM

channels

∑
i

BRi
dNi

dE
JS(ΔΩ)


