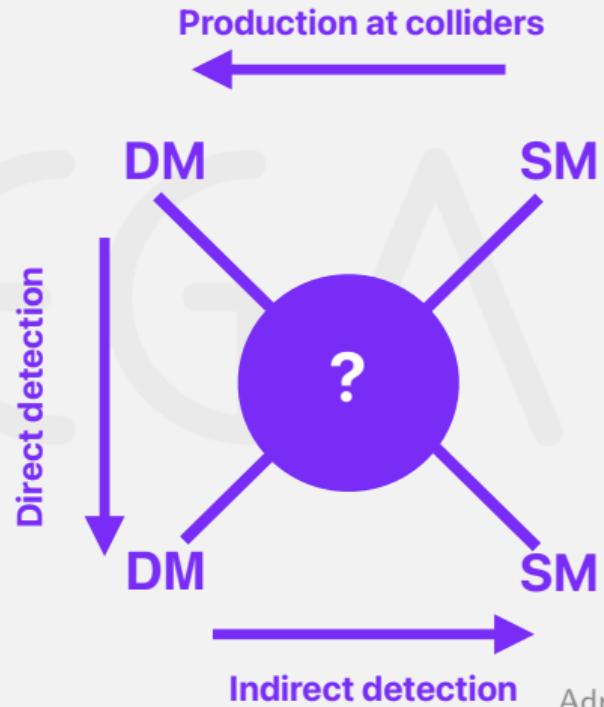

Dark Matter Searches with KM3NeT

Adrian Šaina, on behalf of KM3NeT

Supervisor(s):

Juan de Dios Zornoza¹ Sara Rebecca Gozzini²

Table of Contents


- ▶ Introduction
- ▶ Methods
- ▶ Results
- ▶ Conclusions and outlook

Searching for WIMPs

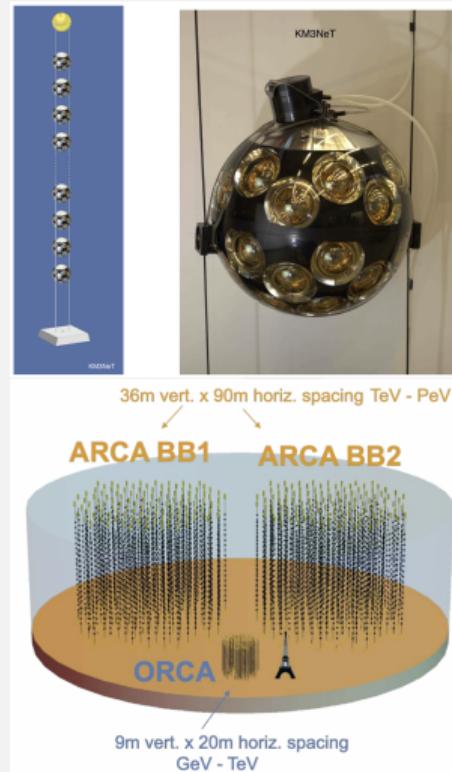
1 Introduction

- Production from SM particle collisions at colliders: missing momentum, resonance searches, displaced vertices → no significant detection
- Direct detection- scattering of DM with the detector medium, recoil energy detected as scintillation, ionisation, phonons: liquid Xe, Ar TPCs, crystals (Ge, Na/I) → no conclusive evidence
- Indirect detection experiments: detect the SM products of self-interactions of dark matter particles

WIMP searches with neutrino telescopes

1 Introduction

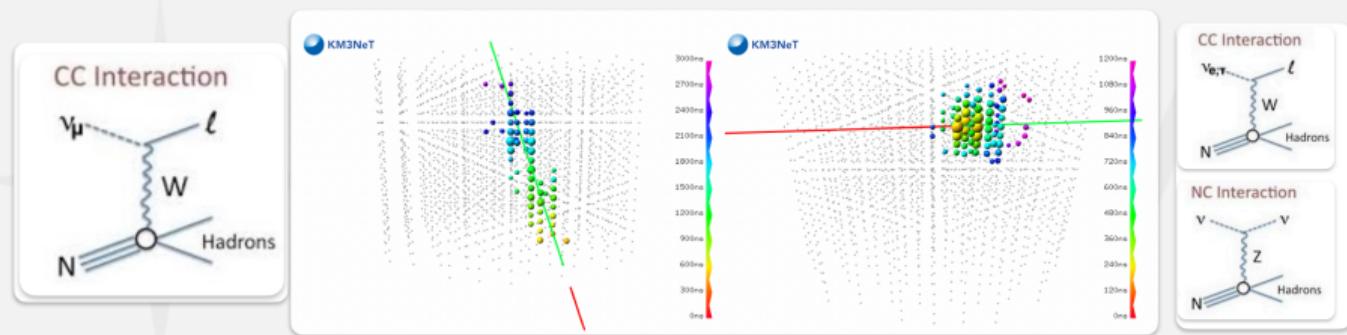
- Detection of neutrinos produced in dark matter annihilations
- Focus on astrophysical objects with a large accumulation of dark matter particles
- Galactic Centre: annihilation in DM halo
- Model-agnostic approach: produce many flux expectations, varying the WIMP mass and primary annihilation channel (100% B.R.):


$$M_{WIMP} = [50 \text{GeV}/c^2 - 100 \text{TeV}/c^2]$$
$$WIMP + WIMP \rightarrow \mu^+ \mu^-, \tau^+ \tau^-, b\bar{b}, W^+ W^-, \nu\bar{\nu}.$$

- Neutrino flux:

$$\Phi = \frac{1}{4\pi} \frac{<\sigma v>}{2m_{WIMP}^2} \int_{E_{th}}^{m_{WIMP}} \left(\frac{dN}{dE} \right)_{\oplus} dE \int_{d\Omega} \int_{\text{l.o.s.}} \rho^2(\theta, l) dl d\Omega.$$

The KM3NeT detector


1 Introduction

- Underwater Čerenkov neutrino detectors in construction at two sites at the bottom of the Mediterranean: Italy and France.
- Čerenkov light is detected by PMTs contained in the Digital Optical Modules (DOMs), which are grouped in vertical Detection Units (DUs).
- KM3NeT/ORCA energy range: [1 – 100 GeV] and KM3NeT/ARCA: [100GeV – PeV].
- KM3NeT/ARCA currently consists of 51 DUs (out of 230), and KM3NeT/ORCA consists of 33 DUs (out of 115).

Event topologies in neutrino telescopes

1 Introduction

$E > \text{few GeV} \rightarrow \text{DIS dominant interaction}$

1 Introduction

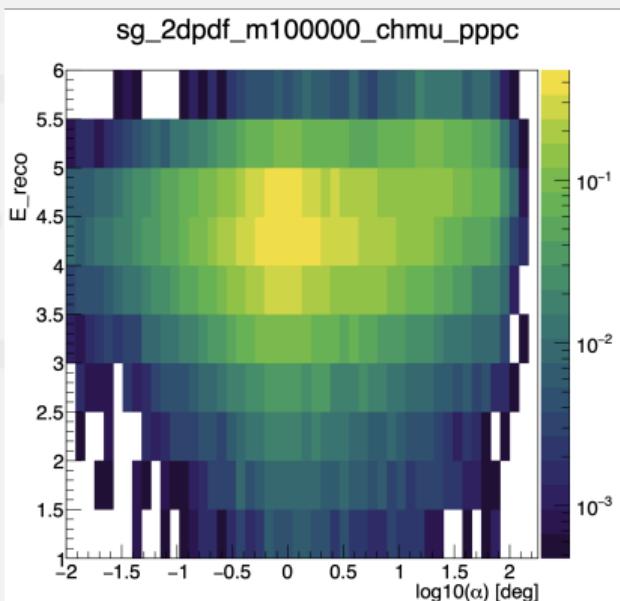
Sources of neutrinos at energies detected by KM3NeT:

- Atmospheric neutrinos: produced in interactions of cosmic rays with the atmosphere → studies of neutrino oscillation patterns allows for measurements of θ_{23} , Δm_{31}^2 and NMO determination with ORCA
- Astrophysical neutrinos: produced by some of the same sources producing cosmic rays and γ -rays: SNRs, PWNe (Galactic), blazars, γ -ray bursts, Seyfert galaxies → ARCA
- Cosmogenic neutrinos: produced by cosmic ray scatterings with CMB
- Neutrinos from dark matter annihilations: from the Sun, Galactic Centre → ARCA and ORCA

Table of Contents

- ▶ Introduction
- ▶ Methods
- ▶ Results
- ▶ Conclusions and outlook

2 Methods


1. Obtain a data and MC event sample of well-reconstructed tracks using some optimised event selection
2. Create expectations of our signal and background in spatial/energy space
3. Create many mock data sets from signal and background models,
 $n_s = \{0, 1, 2, \dots, 49, 50\}$
4. Compute likelihood and test statistic of each sample
5. Obtain limit on number of signal events we can reject with 90% confidence → limit on neutrino flux → annihilation cross section limit

$$n_s \propto \Phi \quad \Phi \propto \langle \sigma \nu \rangle$$

Search method: signal & background probability densities

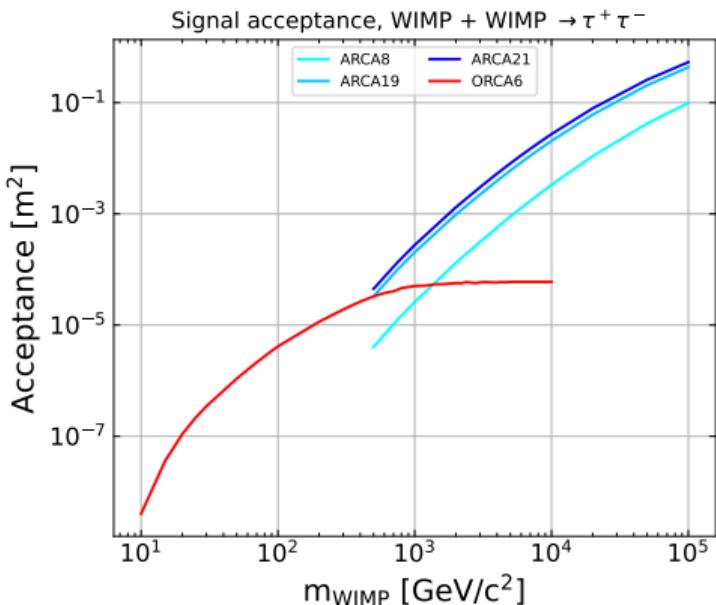
2 Methods

- Dark matter signal, derived from MC:
 - Energy expectation from the WIMP pair-annihilation flux.
 - Angular expectation: detector angular response convolved with source extension (Galactic Centre analysis).
 - 2D function of $\alpha - E_{\text{reco}}$.
- Background expectation, derived from data:
 - Uniform in right ascension \rightarrow scrambling in order to smear out possible signal events.
 - Declination dependence, due to varying visibility at different declinations.
 - 2D function of $\sin(\delta) - E_{\text{reco}}$.

Search method: statistical analysis

2 Methods

- Unbinned likelihood analysis, using the PDFs described in previous slides in order to create mock data and evaluate the signal / background likelihood of events.
- Negative log-likelihood is minimised:


$$\log(\mathcal{L}) = \sum_{i=0}^{N_t} -\log[n_{\text{sg}}^* \mathcal{S}(\alpha_i, E_i) + (N_t - n_{\text{sg}}) \mathcal{B}(\alpha_i, E_i)] - N_t.$$

- TS evaluation:

$$\log_{10}(\text{TS}) = \log_{10}\left(\frac{\mathcal{L}_{\text{min}}}{\mathcal{L}_{\text{bg}}}\right).$$

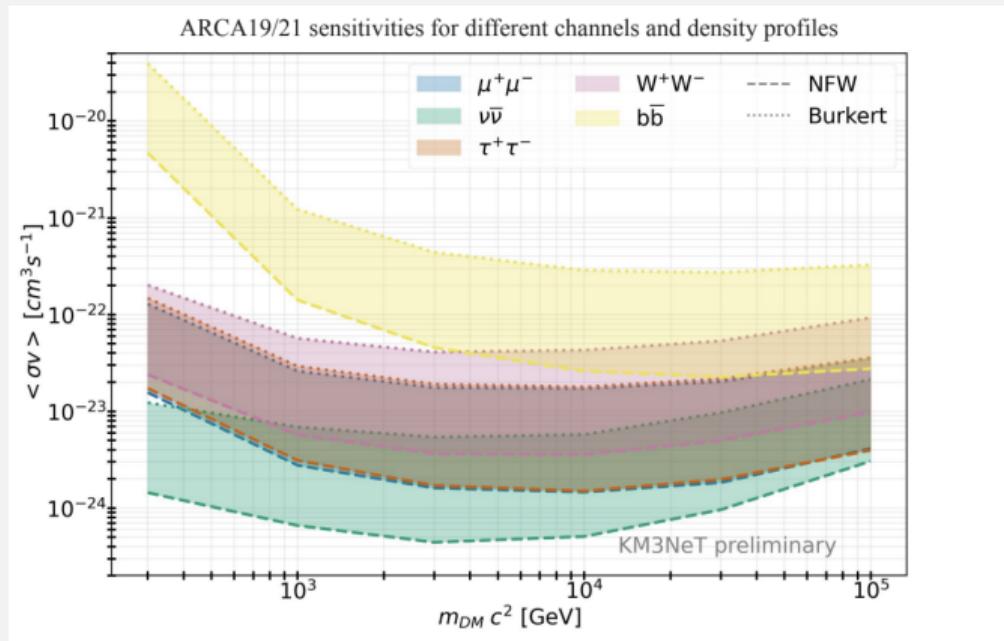
Search method: flux limit computation

2 Methods

- Limit on flux from the number of events limit:

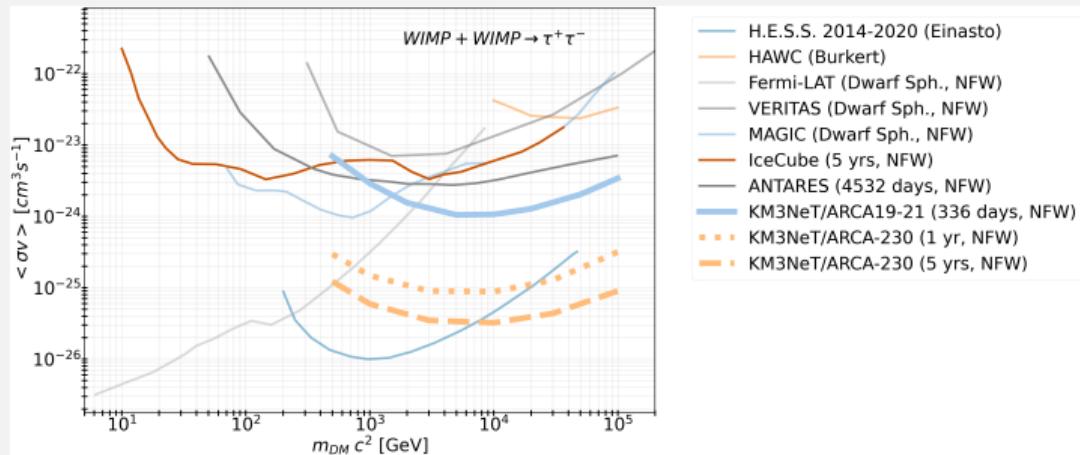
$$\Phi_{90} = \frac{n_{90}}{T \int_{E_{\text{th}}}^{m_{\text{WIMP}}} A_{\text{eff}}(E_{\nu}) \frac{dN}{dE} dE_{\nu}}.$$

- Effective area: computed from simulations from the ratio of detected and generated number of events in particular energy bin.


Table of Contents

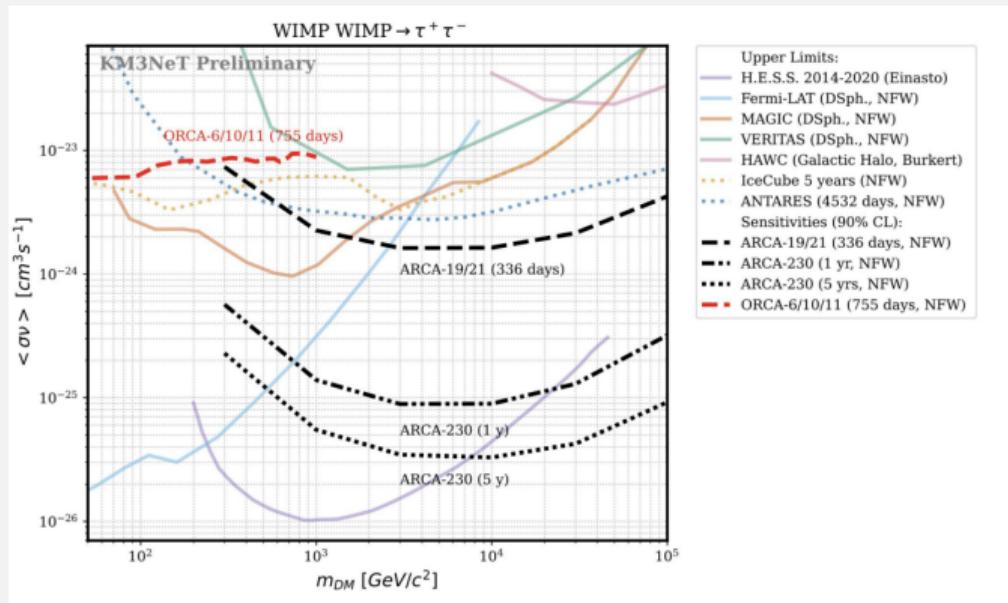
- ▶ Introduction
- ▶ Methods
- ▶ Results
- ▶ Conclusions and outlook

Results: Galactic Centre searches with ARCA


3 Results

Annihilation cross section sensitivities as a function of WIMP mass, for ARCA19+21; bands defined by sensitivities computed with different density profiles

Results: Galactic Centre searches with ARCA


3 Results

Annihilation cross section sensitivities as a function of WIMP mass, for ARCA19+21 and full ARCA projections

Results: Galactic Centre searches with ORCA

3 Results

Annihilation cross section sensitivities as a function of WIMP mass, for ARCA19+21, full ARCA, and for ORCA6+10+11

Table of Contents

- ▶ Introduction
- ▶ Methods
- ▶ Results
- ▶ Conclusions and outlook

Conclusions and outlook

4 Conclusions and outlook

- First results on dark matter searches with KM3NeT in the Galactic Centre
- Constraints are valid for a range of models where annihilation to investigated channels is allowed, and there is no late time suppression of annihilations
- Competitive limits on pair-annihilation in the $\sim \text{TeV}$ mass range, promising full detector sensitivities
- Constraints expected to surpass ANTARES soon: improved detection technology, event selection methodology and improved efficiency across the parameter space using a combination of two detectors

4 Conclusions and outlook

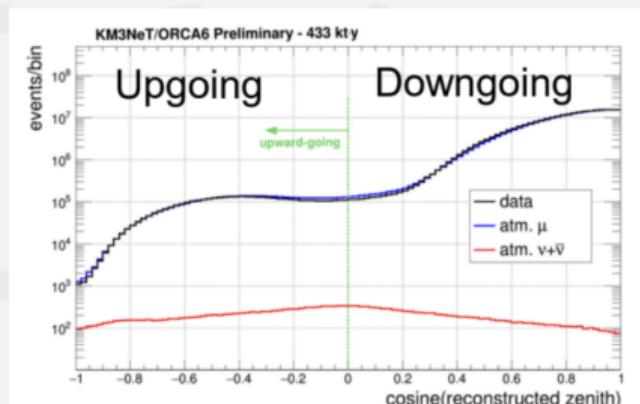
- ANTARES Collaboration, S.R. Gozzini, *PoS(ICRC2023)* 1375
- H.E.S.S. Collaboration, *Phys. Rev. Lett.* **129.11** (2022): 111101.
- IceCube Collaboration, *Physical Review D* **108** (2023): 102004.
- A. McDaniel, M. Ajello, C.M. Karwin, M. Di Mauro, A. Drlica-Wagner and M.A. Sánchez-Conde, *Physical Review D* **109** (2024): 063024.
- MAGIC Collaboration *Phys. Dark Universe* **35** (2022): 100912.
- VERITAS Collaboration, *Physical Review D* **95** (2017): 082001.
- HAWC Collaboration, *The Astrophysical Journal* **945** (2023): 25.
- ANTARES Collaboration, *Phys. Lett. B* **759** (2016): 69.

Dark Matter Searches with KM3NeT

Thank you for listening !

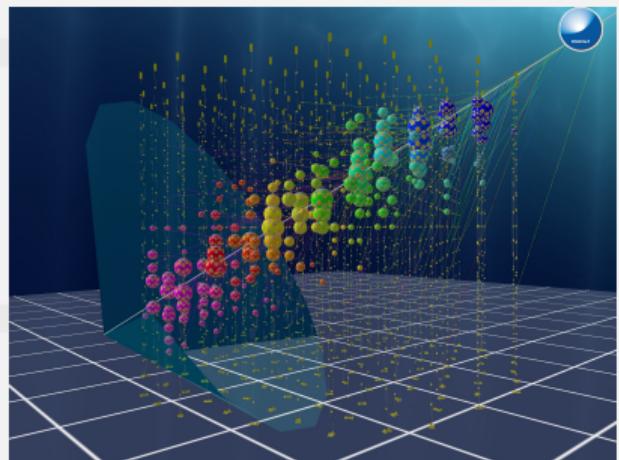
This research was funded by GRISOLIAP/2021/192 grant

Backup


4 Conclusions and outlook

Non-particle background:

- ${}^{40}K$ decays: simulated by adding random hits at 8kHz
- Dark currents / electrical discharges, bioluminescence


Particle background:

- Atmospheric muons:
 - Simulated with parametric flux formulas on can surface
 - Simulated for a portion of the livetime
- Atmospheric neutrinos:
 - Generate outgoing scattering products on same surface
 - w_{gen} computed from the generation spectrum, P_{int} , P_{abs} : reweighted

4 Conclusions and outlook

- **Light propagation:**
 - GEANT4 propagation of particles through detectors ($E < 100$ GeV)
 - Pre-computed light yield tables (high energies)
 - Account for absorption/scattering
 - Light reaching a PMT \rightarrow hit response
- **Triggering:** minimum light yield on a PMT, multiple coincidences, triggers based on track/shower emission profiles
- **Reconstruction:** maximum likelihood fit based on emission profiles of tracks / showers to determine event direction, vertex and energy

4 Conclusions and outlook

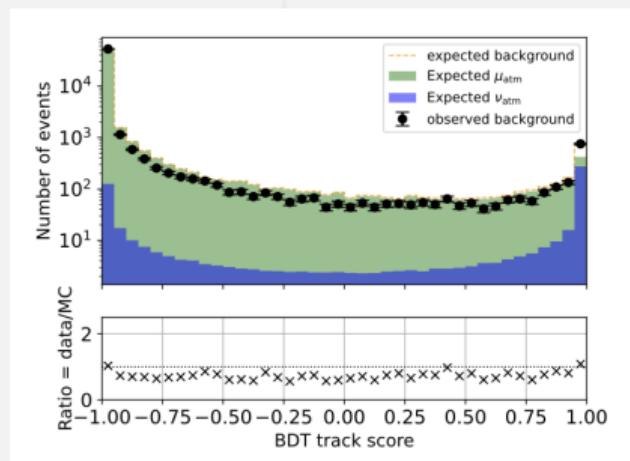
- **Time calibration:**

- Intra-DOM: use ^{40}K decays to calibrate PMTs on same DOM
- Inter-DOM: optical beacons used for the calibration between DOMs on same DU
- Inter-DU: usage of a White Rabbit clock broadcast system, measure the RTT

- **Position calibration:**

- Piezo-electric acoustic sensors detect signals from acoustic beacons on the seabed
- Measure time of arrival → estimate time of emission → distance estimate
- Fit of detector geometry: minimise the differences between measured and expected times

- **Orientation calibration:**

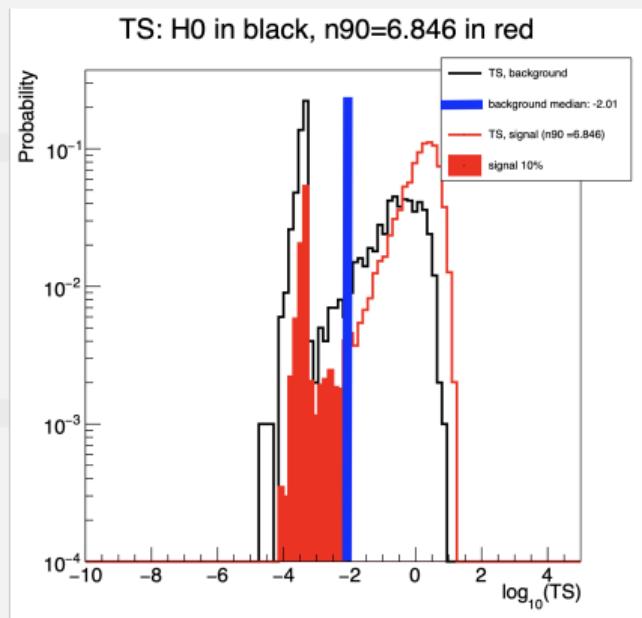

- Relative orientation of DOMs with accelerometers and magnetometers
- Fit procedure to determine DU twist

- **Validation of the calibration:**

- Reconstruction of atmospheric muon tracks → likelihood maximisation varying the calibration parameters

Search method: run and event selection

4 Conclusions and outlook



- Removal of runs with processing issues, unfavourable environmental conditions, etc.
- Background from ^{40}K decays and bioluminescence removed by looking at DOM coincidences.
- Second most dominant background are atmospheric muons → select events traversing the Earth.
- Atmospheric neutrinos: irreducible background.
- Further requirements on reconstruction quality in order to improve purity of event sample (event likelihood, angular error estimate / BDT selection).

Search method: statistical analysis

4 Conclusions and outlook

- Limit evaluation: number of events limit at 90% C.L. is obtained from the TS distribution for which the integral at the data TS is equal to 10%.
- A 30% uncertainty on the detected signal is added by smearing the number of injected signal events, or by smearing the TS distributions

