

A novel method for Forecasting and Recasting Dark Matter Annihilation Limits from Gamma-Ray Observations

Giacomo D'Amico,

Michele Doro & Michela De Caria

Valencia, 5th November 2025

<https://doi.org/10.1016/j.dark.2025.102154>

TeV Particle Astrophysics
T_eVPA
Valencia 2025

IFAE
Institut de Física
d'Altes Energies

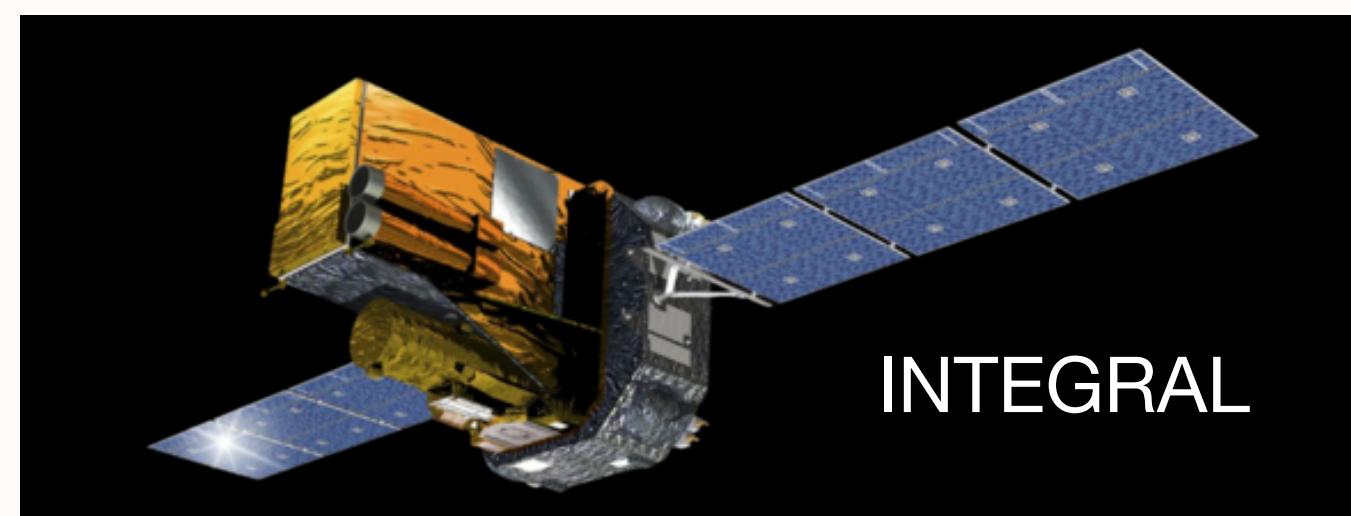
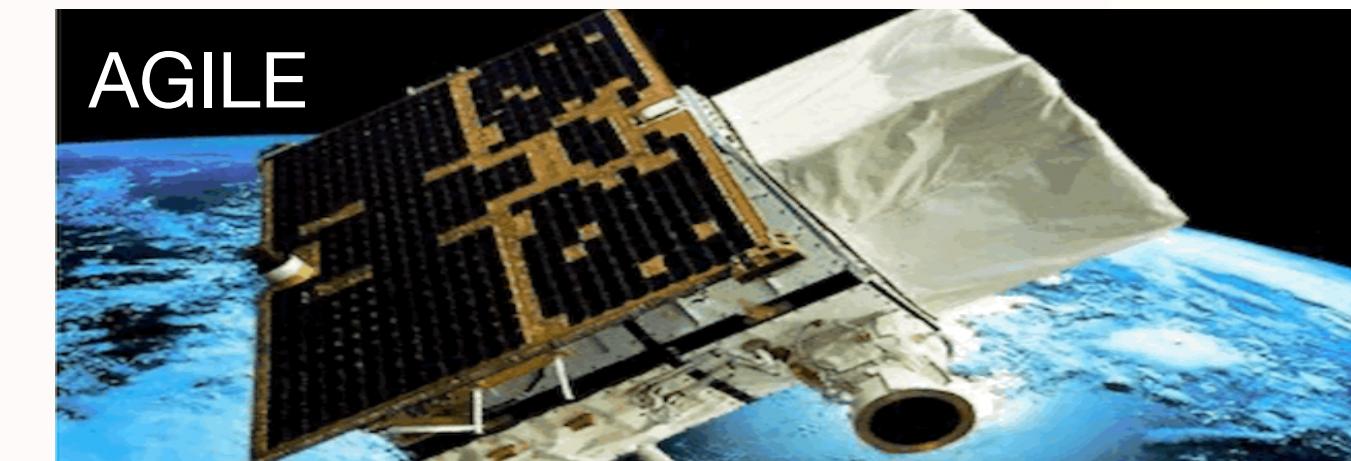
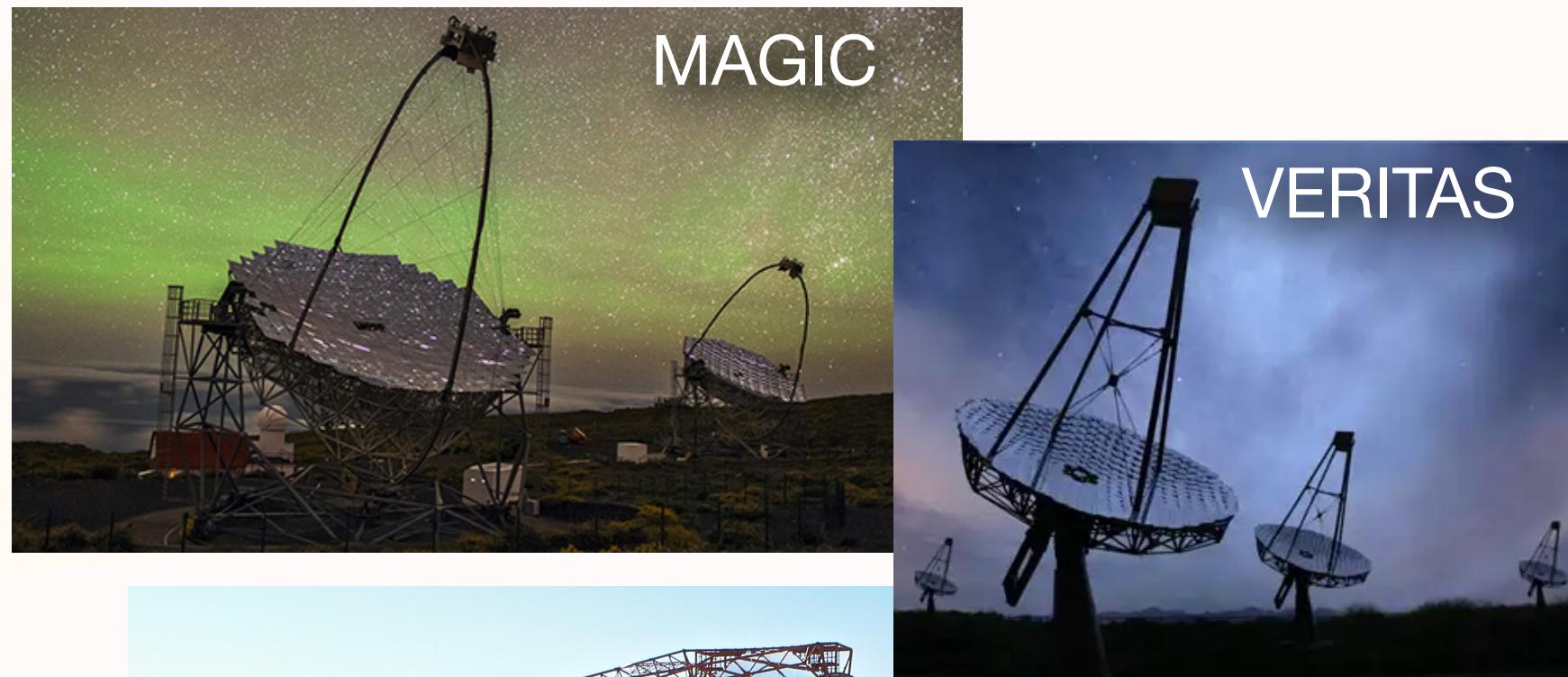
beatriu
de pinós **bp'**

Motivation

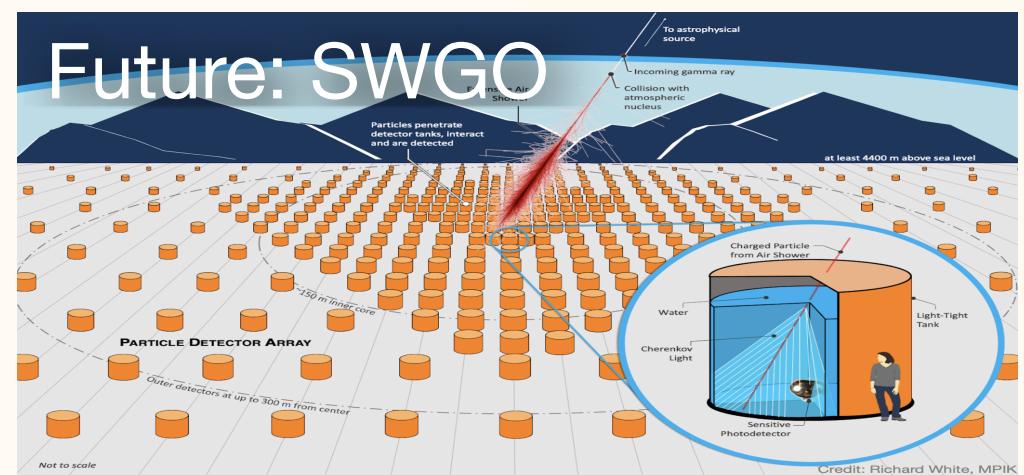
Different γ -ray telescopes have been trying to detect DM in the past decade

Imaging Atmospheric Cherenkov Telescopes

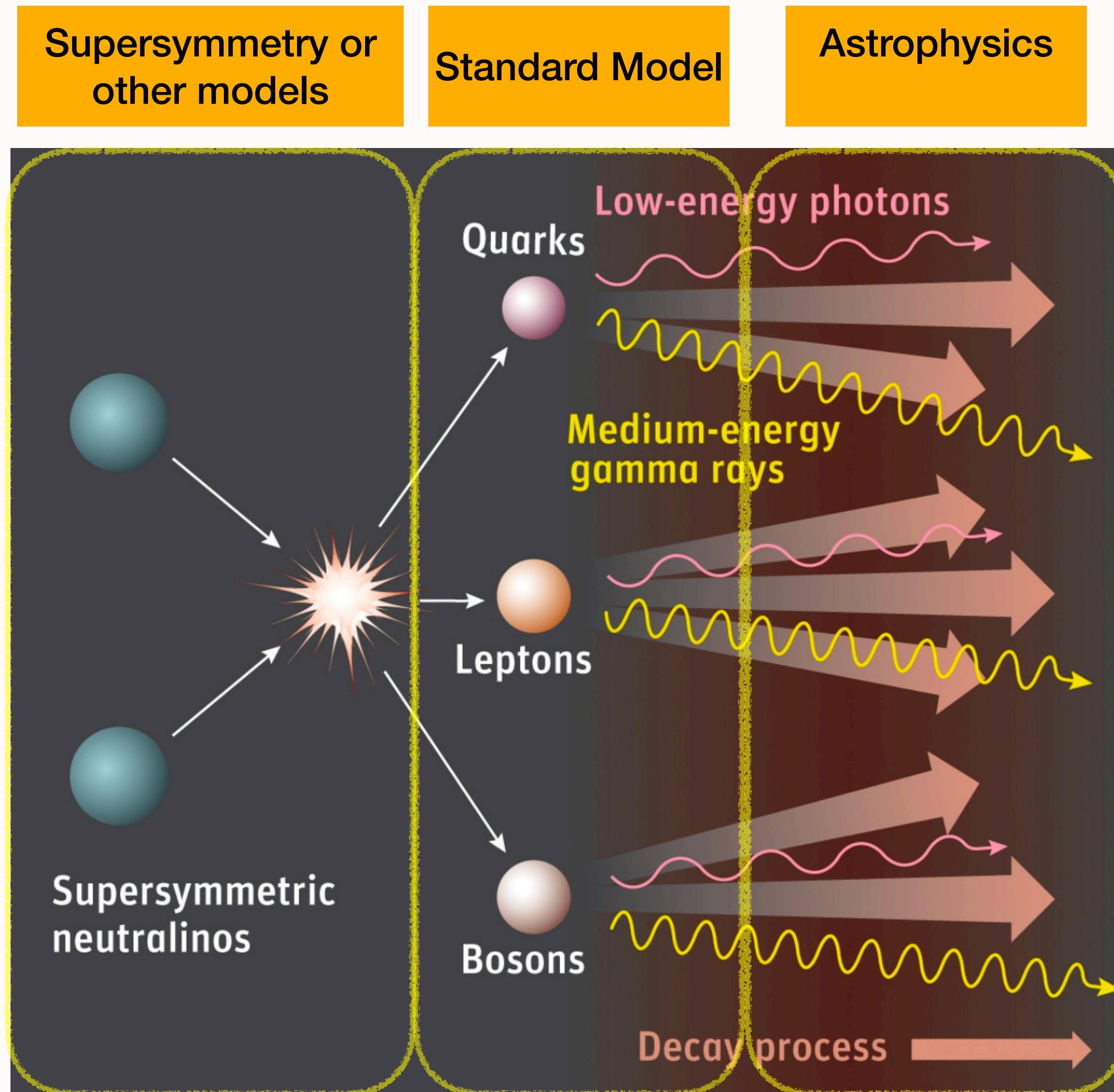
Space Telescopes



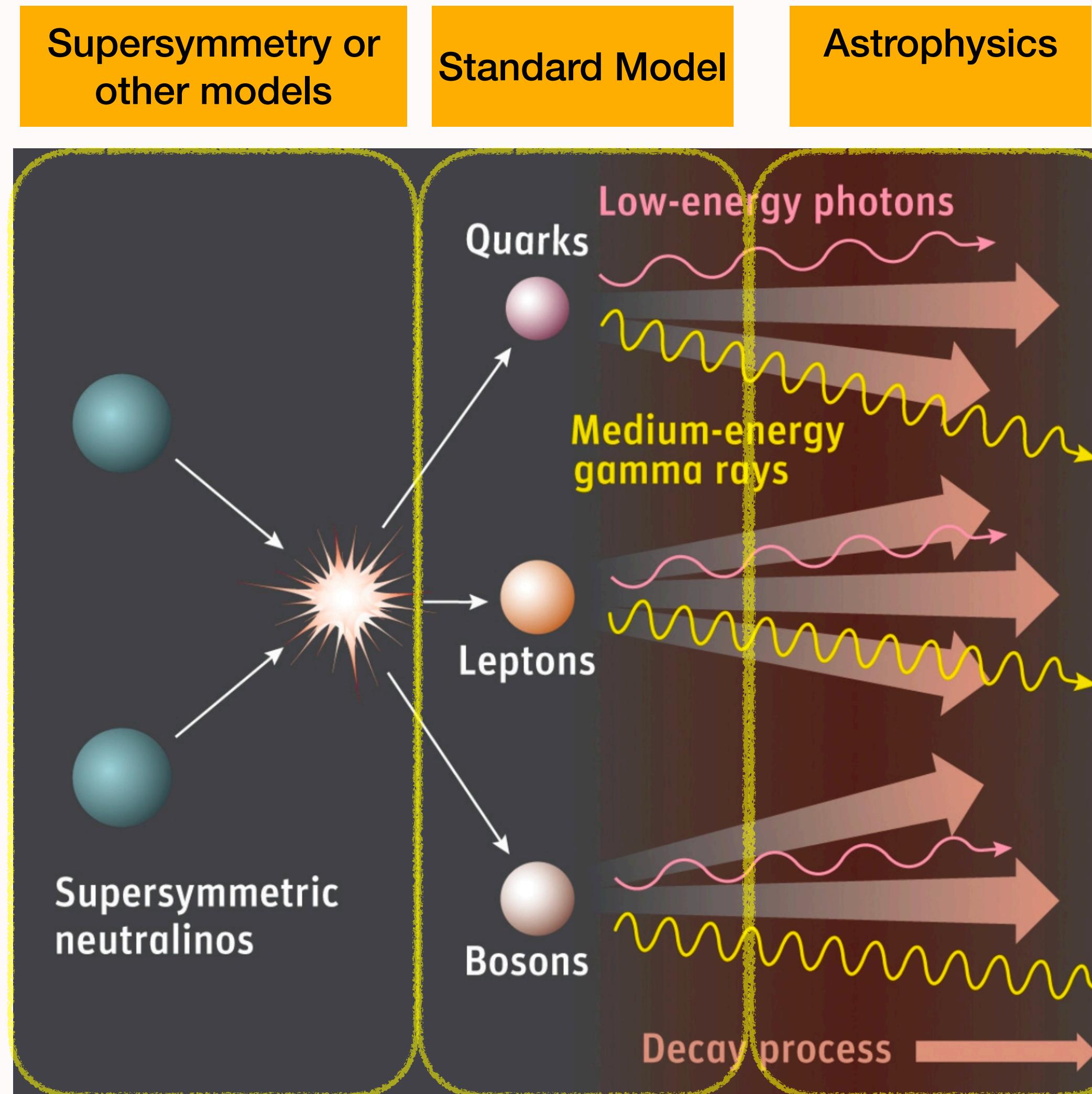
Water Cherenkov detector



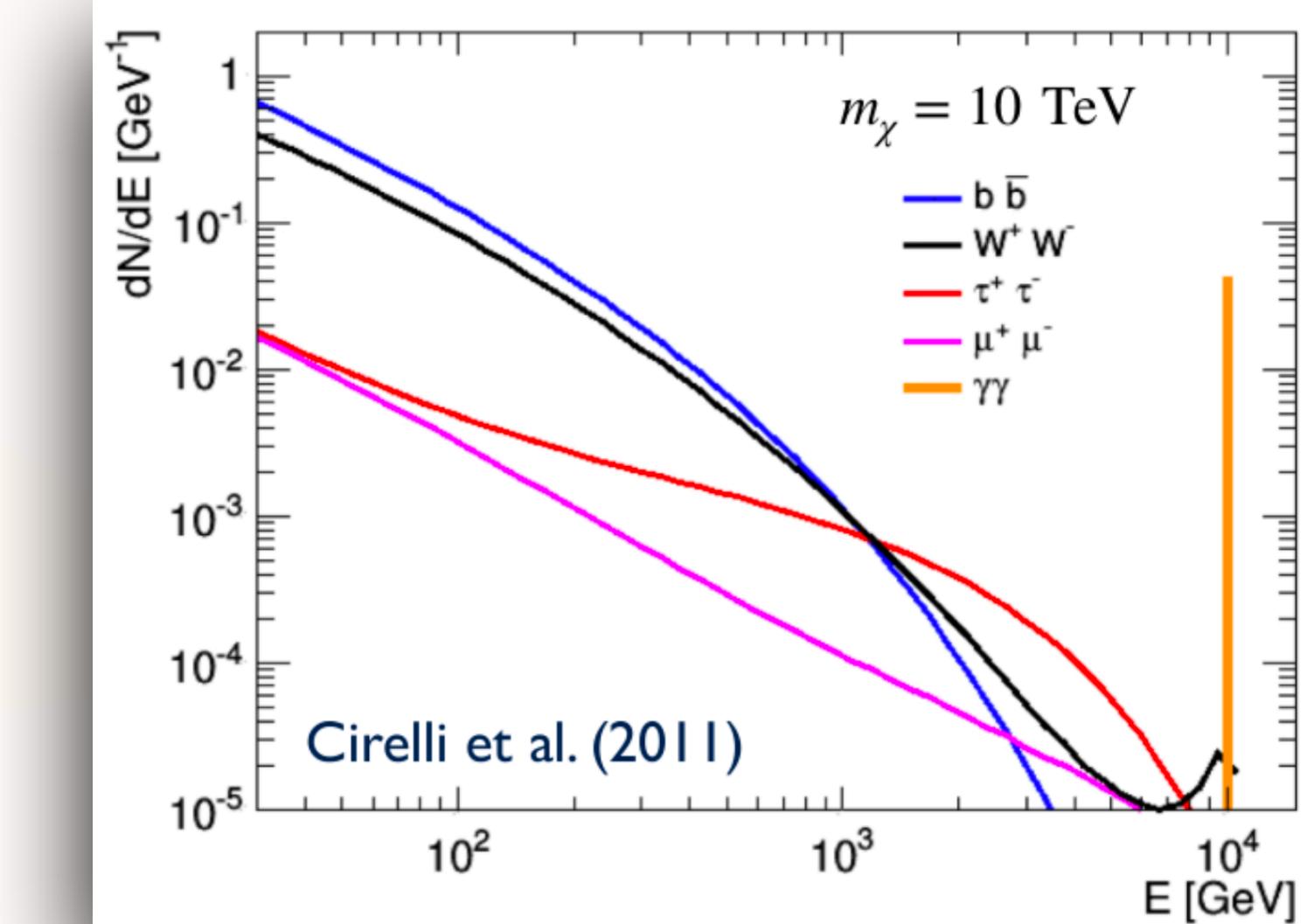
Motivation



Motivation



Energy distribution of gamma-rays from DM annihilation

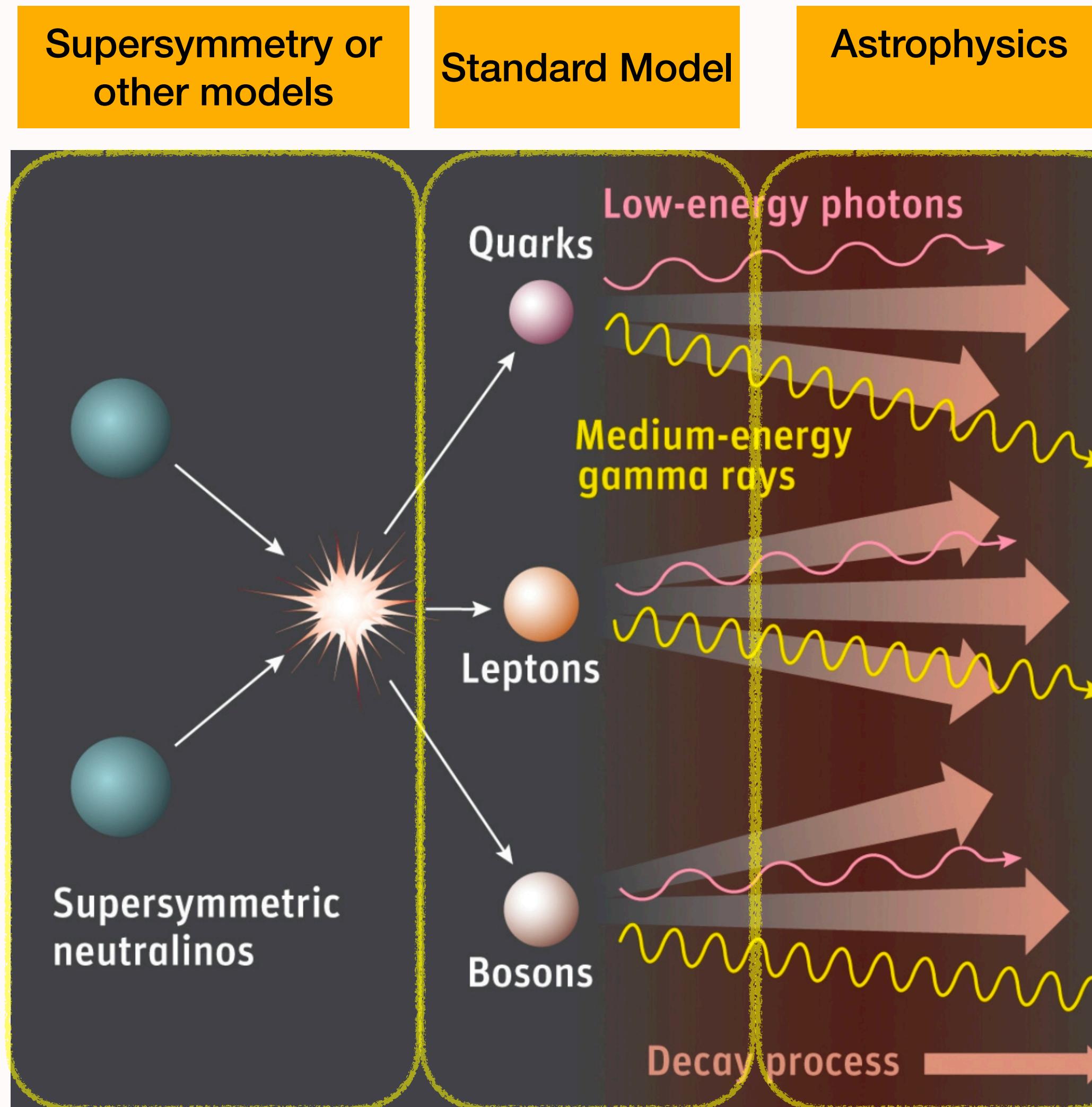
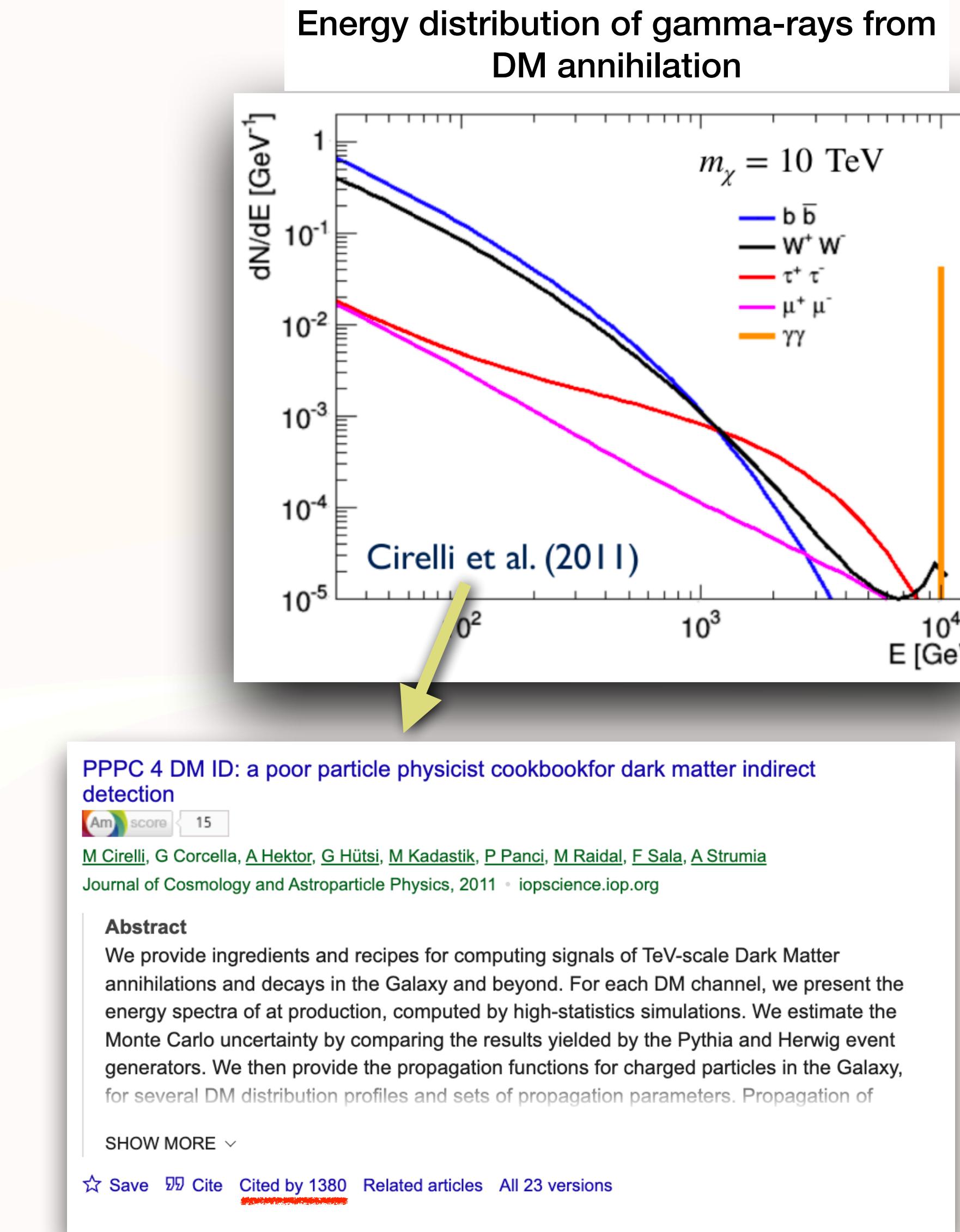


DM cross-section

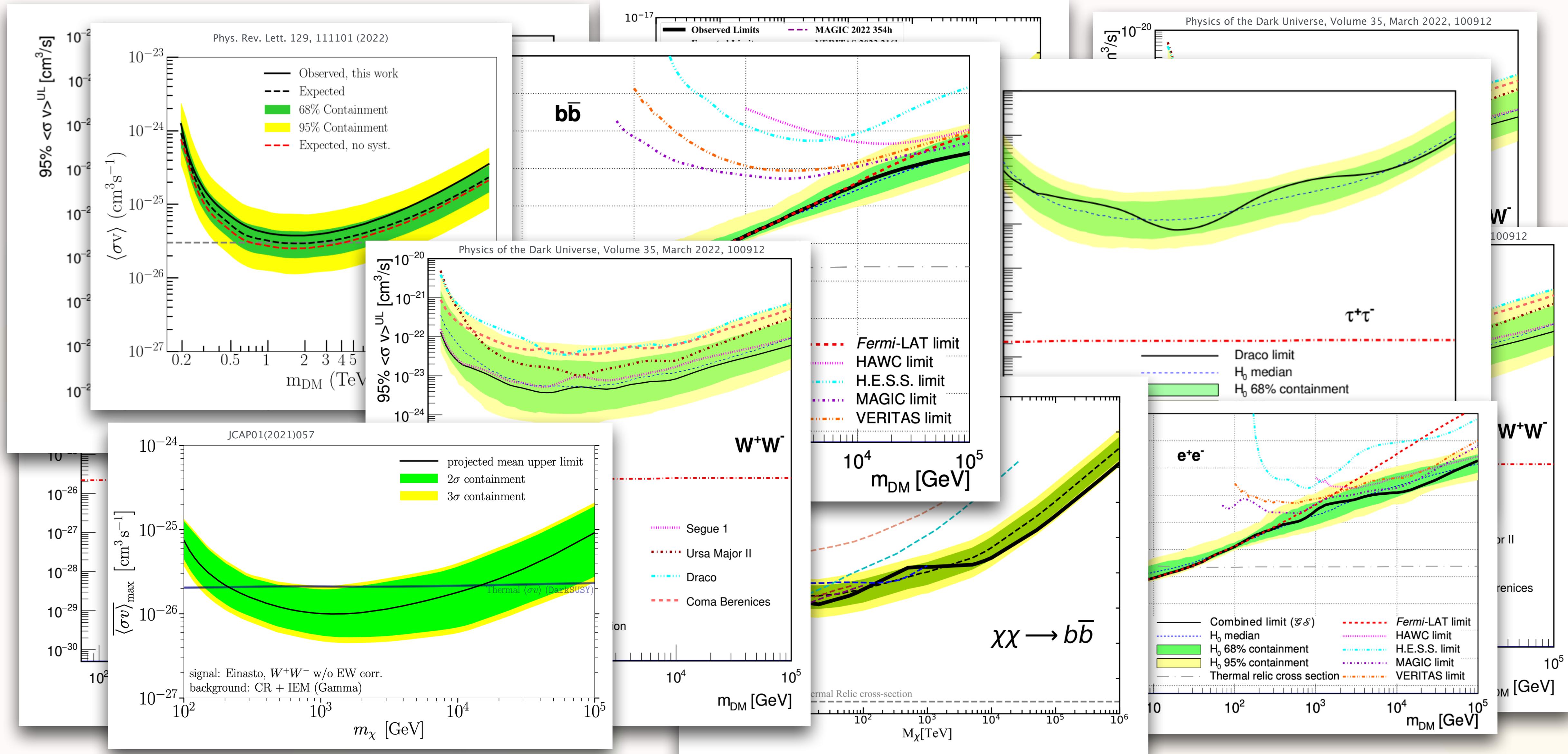
$$\text{IRF} \otimes \frac{dN_\gamma(E)}{dE} \cdot \frac{T_{\text{obs}} J}{8\pi m_\chi^2} \cdot \langle \sigma v \rangle$$

Instrument Response Function

Motivation



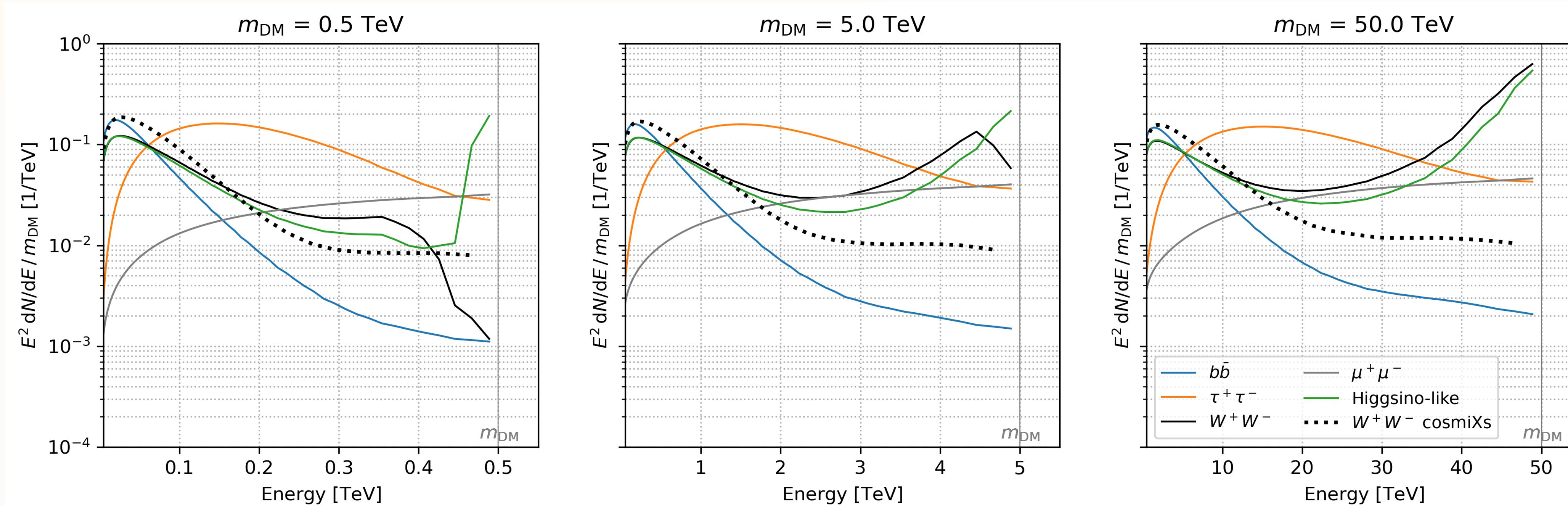
Motivation



Motivation

Would it be possible to reinterpret (*recast*) the published DM ULs from “benchmark” annihilation modes into alternative models?

Example:



Upper/Lower Limits

The standard “rule” for getting upper/lower limits

$$-2 \ln \mathcal{L}(\sigma) = \lambda$$

The likelihood

By definition the probability of the data given your model

parameter of interest σ

A threshold value

Whose value can be 2.71 for a 95% CL if the likelihood is properly *profiled* (Wilks’ theorem)

Or obtained through MC simulations

Upper/Lower Limits

The standard “rule” for getting upper/lower limits

$$-2 \ln \mathcal{L}(\sigma) = \lambda$$

$$-2 \ln \mathcal{L}(\sigma) \equiv 2 \sum_i f_i(s_i) \quad \text{Analysis usually performed in bins}$$

Upper/Lower Limits

The standard “rule” for getting upper/lower limits

$$-2 \ln \mathcal{L}(\sigma) = \lambda$$

$$-2 \ln \mathcal{L}(\sigma) \equiv 2 \sum_i f_i(s_i)$$

i ↑

Expected signal count per bin i

$$s_i = K_i \cdot \sigma$$

with K_i a bin-dependent proportional factor

$$K_i \equiv \int_{\Delta E'_i} dE' \int dE A_{\gamma, \text{eff}}(E) \cdot \mathcal{G}(E, E') \cdot \frac{dN_\gamma}{dE} \cdot \frac{T_{\text{obs}} J}{8\pi m_\chi^2}$$

Upper/Lower Limits

The standard “rule” for getting upper/lower limits

$$-2 \ln \mathcal{L}(\sigma) = \lambda$$

$$-2 \ln \mathcal{L}(\sigma) \equiv 2 \sum_i f_i(s_i) \simeq \sum_i K_i^2 f_i''(K_i \hat{\sigma}) (\sigma - \hat{\sigma})^2$$

i

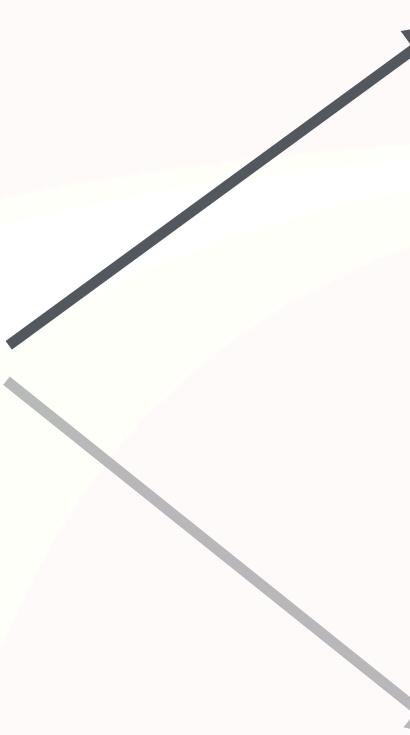
Taylor expansion around the value $\hat{\sigma}$ that maximizes the likelihood [1]

Upper/Lower Limits

The standard “rule” for getting upper/lower limits

$$-2 \ln \mathcal{L}(\sigma) = \lambda$$

$$\sum_i K_i^2 f_i''(K_i \hat{\sigma}) (\sigma - \hat{\sigma})^2 \simeq \lambda$$



$$\sigma^{UL} \simeq \hat{\sigma} + \sqrt{\frac{\lambda}{\sum_i K_i^2 f_i''(K_i \hat{\sigma})}}$$

Upper Limits

$$\sigma^{UL} \simeq \hat{\sigma} + \sqrt{\frac{\lambda}{\sum_i K_i^2 f_i''(K_i \hat{\sigma})}}$$

↓

$$f_i(s_i) = s_i - n_i \ln(s_i + b_i) + (1 + \alpha) b_i - m_i \ln(\alpha b_i) + C$$

On counts

Expected bkg (nuisance)

Off counts

Model-independent constant

Cash Statistic

Wstat (On/Off) Statistic

The diagram illustrates the relationship between the Cash Statistic and the Wstat (On/Off) Statistic. The Cash Statistic is the sum of four terms: On counts, Expected bkg (nuisance), Off counts, and Model-independent constant. The Wstat (On/Off) Statistic is the sum of the On counts and Off counts terms. Arrows point from the terms in the Cash Statistic equation to their respective components in the Wstat equation.

Upper Limits

$$\sigma^{UL} \simeq \hat{\sigma} + \sqrt{\frac{\lambda}{\sum_i K_i^2 f_i''(K_i \hat{\sigma})}}$$

↓

$$f_i(s_i) = s_i - n_i \ln(s_i + b_i) + (1 + \alpha) b_i - m_i \ln(\alpha b_i) + C$$

On counts

Expected bkg (nuisance)

Off counts

Model-independent constant

Cash Statistic

Wstat (On/Off) Statistic

$$f''(s) = n \frac{(1 + \frac{db}{ds})^2 - (s + b) \frac{d^2b}{ds^2}}{(s + b)^2} + m \frac{\left(\frac{db}{ds}\right)^2 - \frac{d^2b}{ds^2}b}{b^2} + (1 + \alpha) \frac{d^2b}{ds^2}$$

Upper Limits

$$\sigma^{UL} \simeq \hat{\sigma} + \sqrt{\frac{\lambda}{\sum_i K_i^2 f_i''(K_i \hat{\sigma})}}$$

↓

Expected bkg (nuisance)

On counts

Off counts

Model-independent constant

$$f_i(s_i) = s_i - n_i \ln(s_i + b_i) + (1 + \alpha) b_i - m_i \ln(\alpha b_i) + C$$

Cash Statistic

Wstat (On/Off) Statistic

$$f''(s) = n \frac{(1 + \frac{db}{ds})^2 - (s + b) \frac{d^2b}{ds^2}}{(s + b)^2} + m \frac{\left(\frac{db}{ds}\right)^2 - \frac{d^2b}{ds^2}b}{b^2} + (1 + \alpha) \frac{d^2b}{ds^2}$$

$\xrightarrow{\begin{array}{l} \text{No signal hypothesis } \hat{\sigma} = 0 \\ s = 0 \quad n = b \quad m = ab \end{array}}$

Upper Limits - Approximate expression

Cash statistic

$$\sigma^{UL} \simeq \sqrt{\frac{\lambda}{\sum_i K_i^2/b_i}}$$

Wstat (On/Off) statistic

$$\sigma^{UL} \simeq \sqrt{\frac{\lambda}{\sum_i K_i^2/((1 + \alpha^{-1})b_i)}}$$

Forecasting Upper Limits

Cash statistic

$$\sigma^{UL} \simeq \sqrt{\frac{\lambda}{\sum_i K_i^2/b_i}}$$

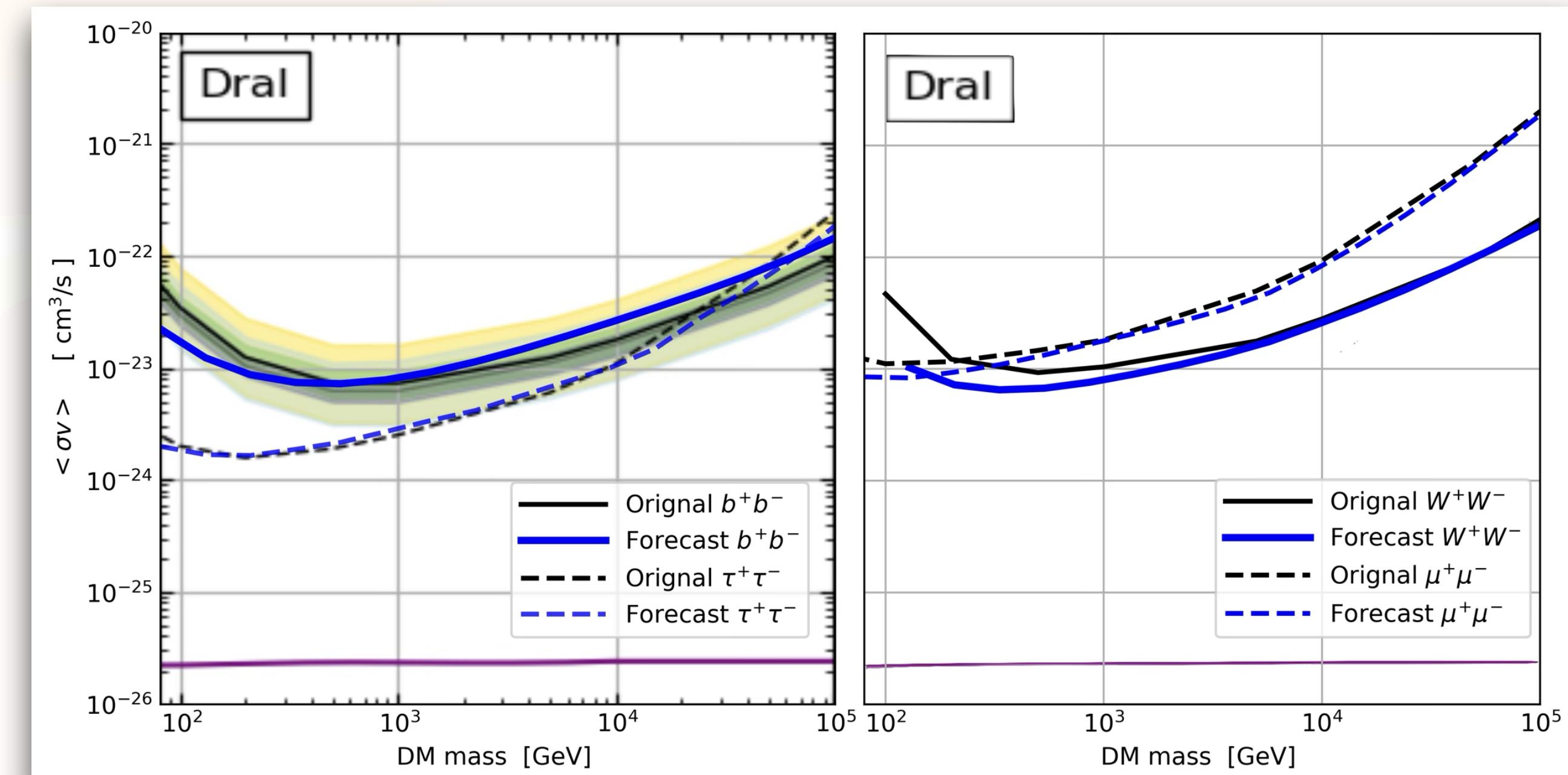
Wstat (On/Off) statistic

$$\sigma^{UL} \simeq \sqrt{\frac{\lambda}{\sum_i K_i^2/((1 + \alpha^{-1})b_i)}}$$

1 Forecasting Upper Limits

We adopt the same observational assumptions as in [1]:

- a J -factor of $10^{18.7}$ GeV 2 /cm 5 integrated over a cone of radius 0.5°
- total observation time of 100 hours
- Publicly available IRFs of CTAO



[1] Abe, K., et al. "Prospects for dark matter observations in dwarf spheroidal galaxies with the Cherenkov Telescope Array Observatory." *Monthly Notices of the Royal Astronomical Society* (2025): staf1798.

Recasting Across Models

Cash statistic

$$\sigma^{UL} \simeq \sqrt{\frac{\lambda}{\sum_i K_i^2/b_i}}$$

Wstat (On/Off) statistic

$$\sigma^{UL} \simeq \sqrt{\frac{\lambda}{\sum_i K_i^2/((1 + \alpha^{-1})b_i)}}$$

2 Recasting Across Models

Dark Model I

Dark Model 0

$$\frac{\sigma_I^{UL}}{\sigma_0^{UL}} = \sqrt{\frac{\sum_i K_{0,i}^2/b_i}{\sum_i K_{I,i}^2/b_i}}$$

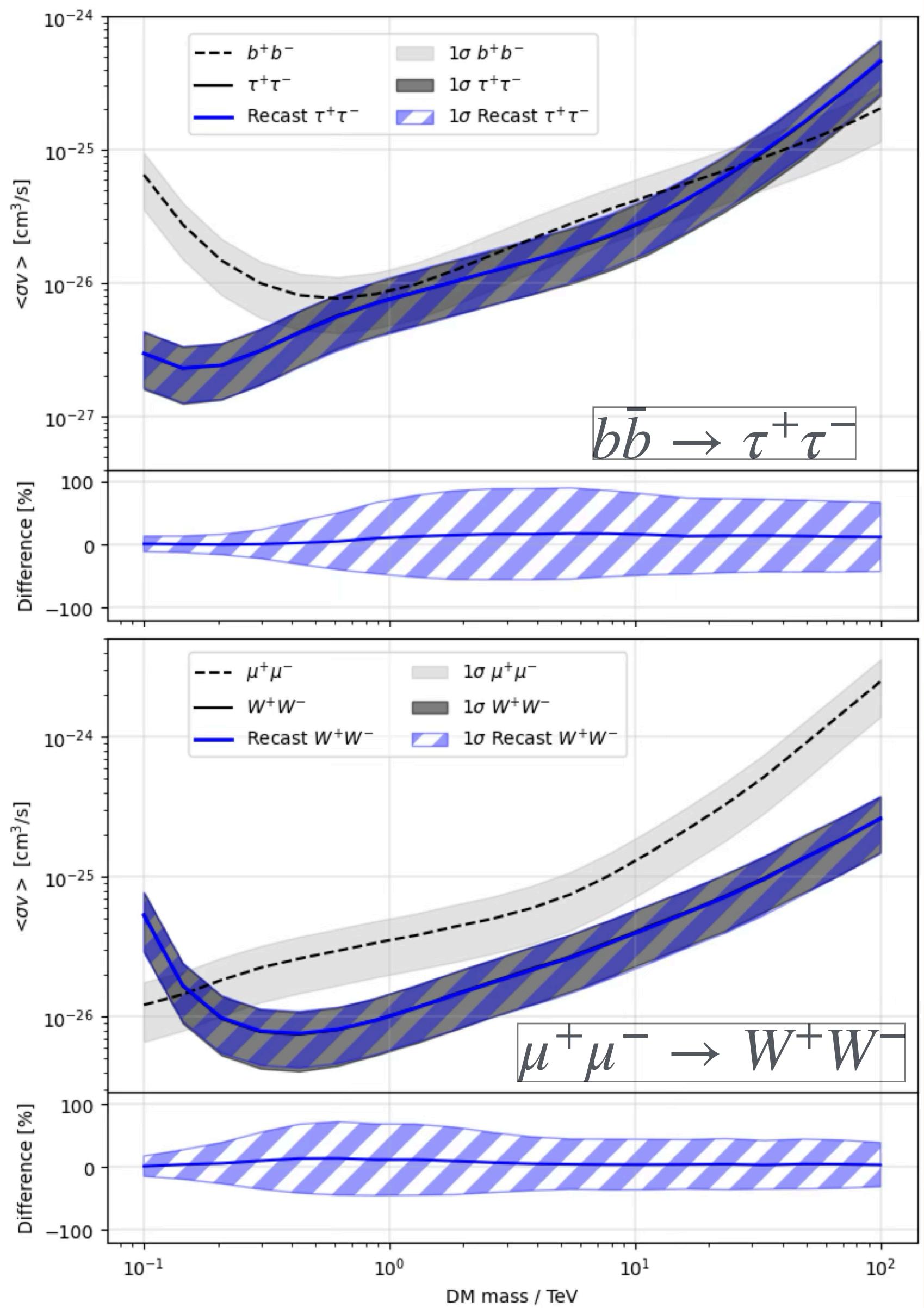
$$\sigma_I^{UL} = \sqrt{\frac{\sum_i K_{0,i}^2/b_i}{\sum_i K_{I,i}^2/b_i}} \cdot \sigma_0^{UL}$$

Recasting Across Models

Validation on MC simulations

We generated 10^5 toy MC realizations under the null hypothesis of no DM signal:

1. We draw Poisson distributed counts n_i (ON region) and m_i (OFF region) in every energy bin
2. Publicly available IRFs of CTAO were adopted
3. Using the binned likelihood, we derived σ^{UL} for each DM mass m_χ and for four annihilation channels: $\tau^+\tau^-$, $b\bar{b}$, $\mu^+\mu^-$, and W^+W^-
4. The ULs for $\tau^+\tau^-$ and W^+W^- were recast from those of $b\bar{b}$ and $\mu^+\mu^-$, respectively



Recasting Across Models - dealing with missing IRF

Recasting expression required knowledge of the instrument IRF (background b_i and telescope response for computing K_i)

$$\sigma_I^{UL} = \sqrt{\frac{\sum_i K_{0,i}^2/b_i}{\sum_i K_{I,i}^2/b_i}} \cdot \sigma_0^{UL}$$

Recasting Across Models - dealing with missing IRF

Recasting expression required knowledge of the instrument IRF (background b_i and telescope response for computing K_i)

$$\sigma_I^{UL} = \sqrt{\frac{\sum_i K_{0,i}^2/b_i}{\sum_i K_{I,i}^2/b_i}} \cdot \sigma_0^{UL} \equiv \sqrt{\frac{\sum_i (V_i \cdot \Delta N_{\gamma,i}^0)^2}{\sum_i (V_i \cdot \Delta N_{\gamma,i}^I)^2}} \cdot \sigma_0^{UL}$$

Recasting Across Models - dealing with missing IRF

Recasting expression required knowledge of the instrument IRF (background b_i and telescope response for computing K_i)

$$\sigma_I^{UL} = \sqrt{\frac{\sum_i K_{0,i}^2/b_i}{\sum_i K_{I,i}^2/b_i}} \cdot \sigma_0^{UL} \equiv \sqrt{\frac{\sum_i (V_i \cdot \Delta N_{\gamma,i}^0)^2}{\sum_i (V_i \cdot \Delta N_{\gamma,i}^I)^2}} \cdot \sigma_0^{UL}$$

?

**intrinsic number of photons
predicted by the DM model**

We can compute it!

$$\Delta N_{\gamma,i} \equiv \int_{\Delta E'_i} dE \frac{dN_{\gamma}}{dE}$$

Recasting Across Models - dealing with missing IRF

Recasting expression required knowledge of the instrument IRF (background b_i and telescope response for computing K_i)

$$\sigma_I^{UL} = \sqrt{\frac{\sum_i K_{0,i}^2/b_i}{\sum_i K_{I,i}^2/b_i}} \cdot \sigma_0^{UL} \equiv \sqrt{\frac{\sum_i (V_i \cdot \Delta N_{\gamma,i}^0)^2}{\sum_i (V_i \cdot \Delta N_{\gamma,i}^I)^2}} \cdot \sigma_0^{UL}$$

\downarrow

$$V_i \equiv \frac{K_i}{\sqrt{b_i \cdot \Delta N_{\gamma,i}}} \approx \frac{1}{\sqrt{b_i}} A_i$$

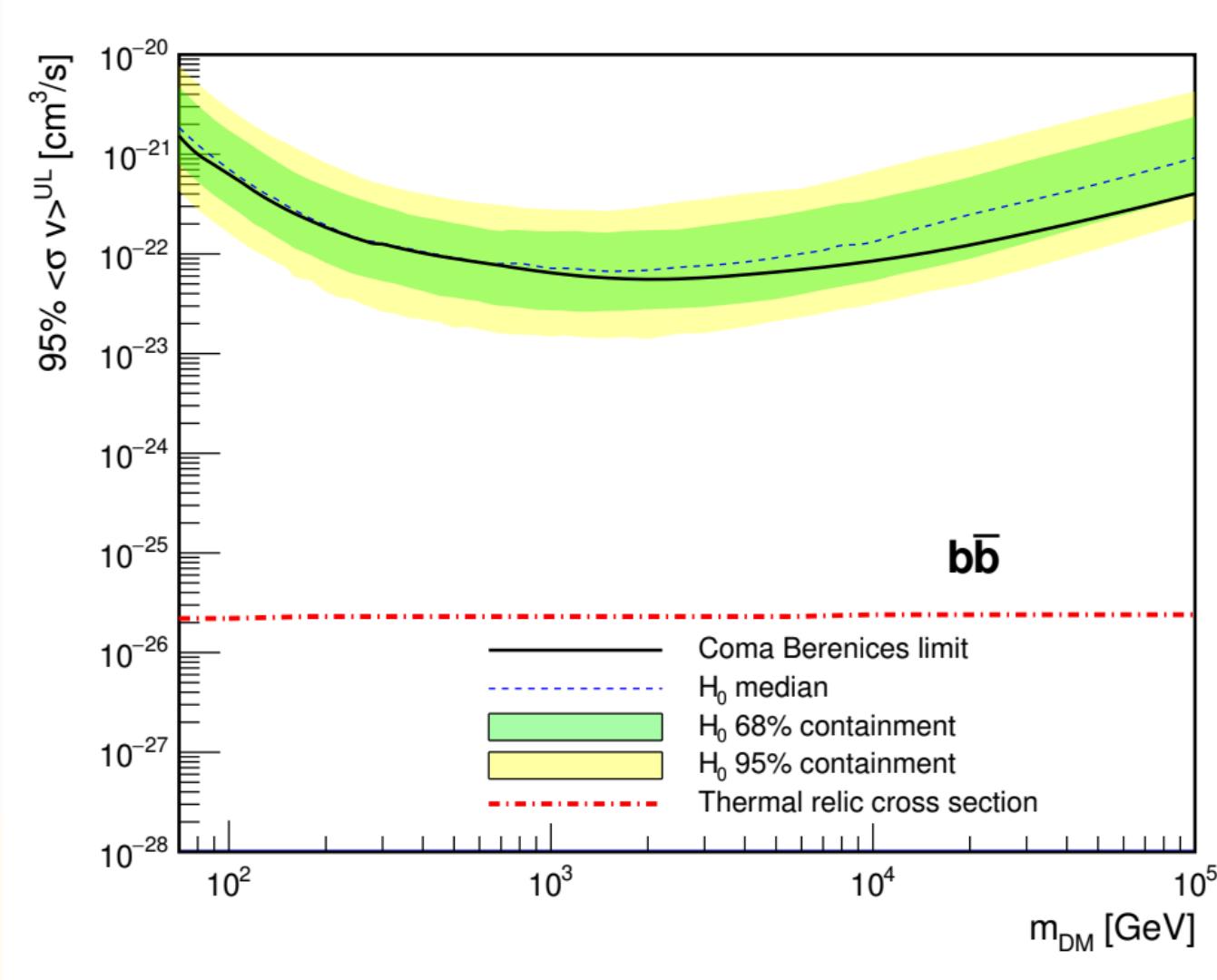
\uparrow \uparrow

✓ V_i are approximately model independent, therefore can be obtained by comparing ULs from 2 channels

Under the assumption of good energy resolution and DM spectrum varying slowly compared to the bin width

Effective area averaged over the bin i

Recasting Across Models - dealing with missing IRF

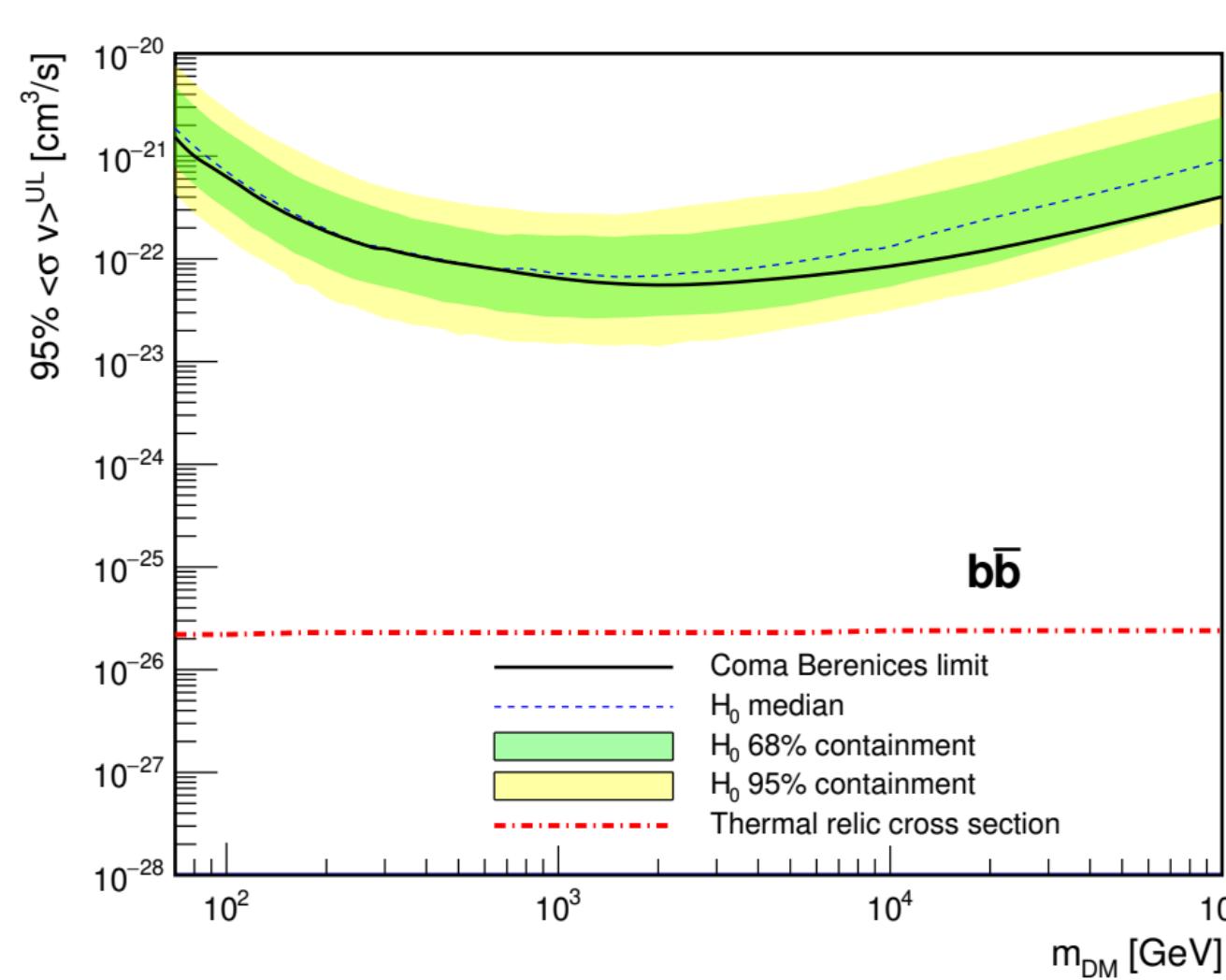
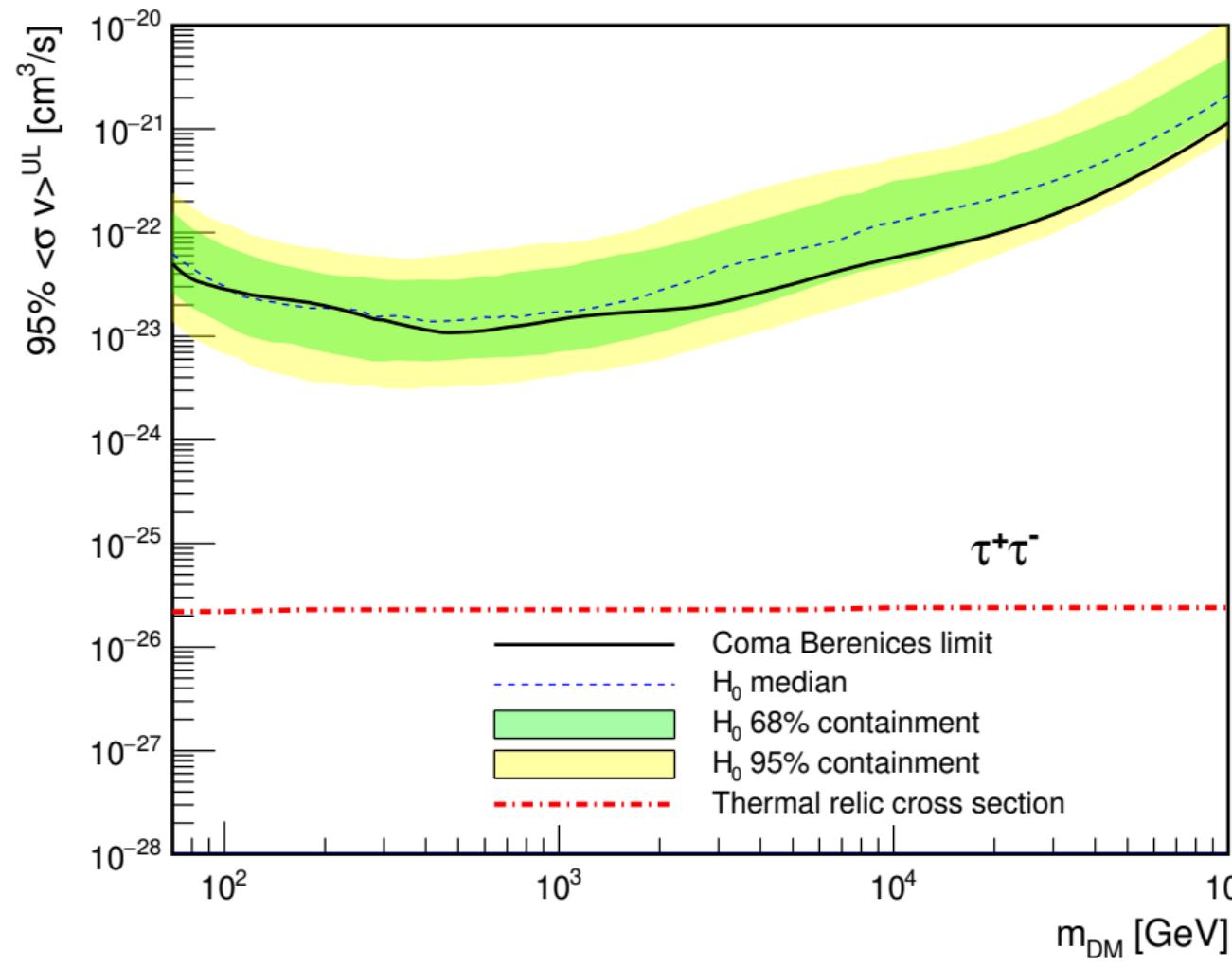


?

\rightarrow

$W^+ W^-$

Recasting Across Models - dealing with missing IRF



?

→

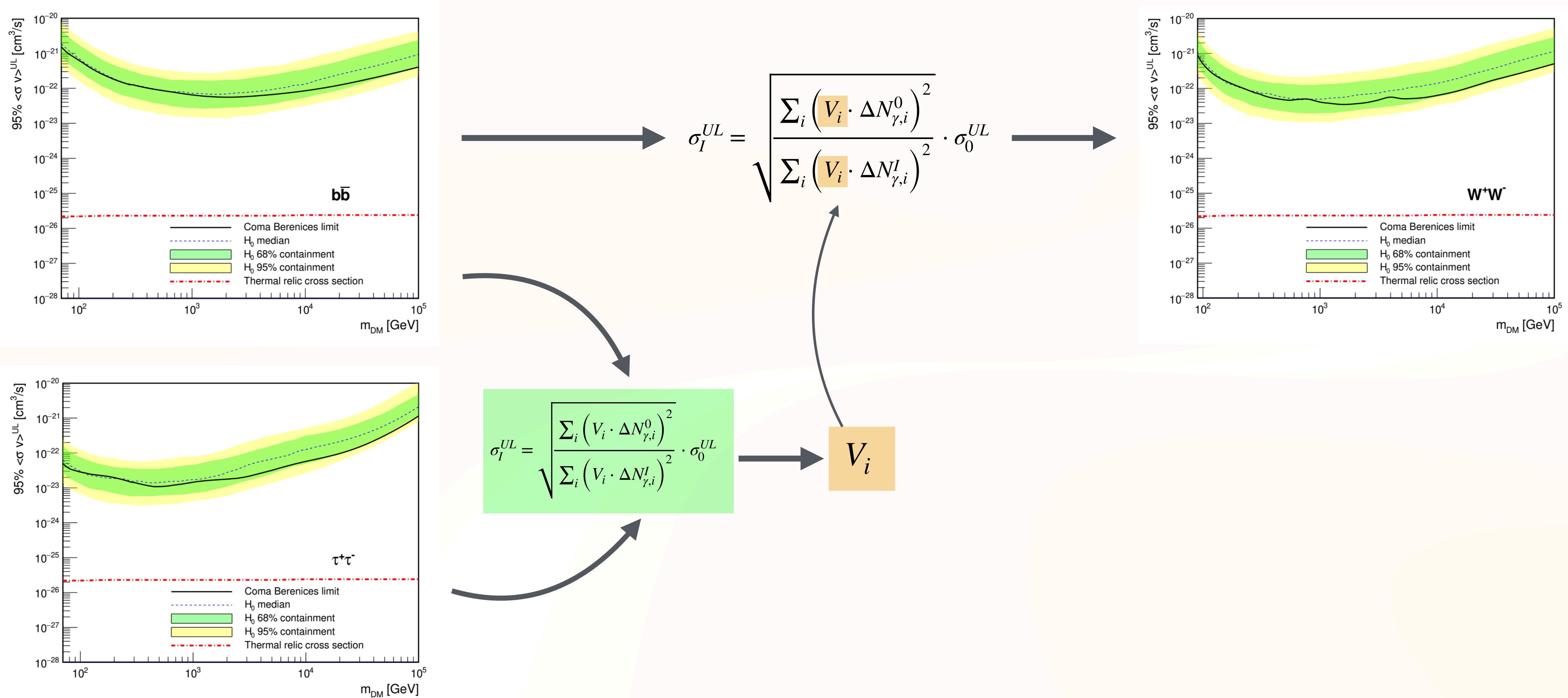
$W^+ W^-$

$$\sigma_I^{\text{UL}} = \sqrt{\frac{\sum_i (V_i \cdot \Delta N_{\gamma,i}^0)^2}{\sum_i (V_i \cdot \Delta N_{\gamma,i}^I)^2}} \cdot \sigma_0^{\text{UL}}$$

→

V_i

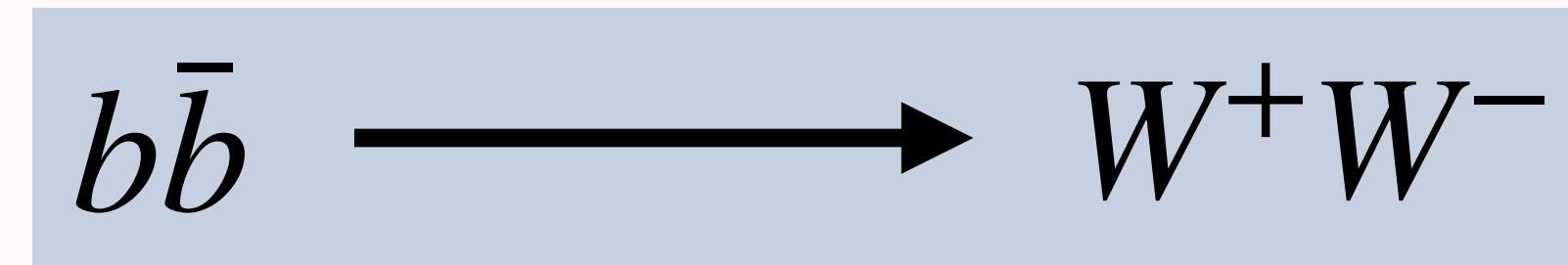
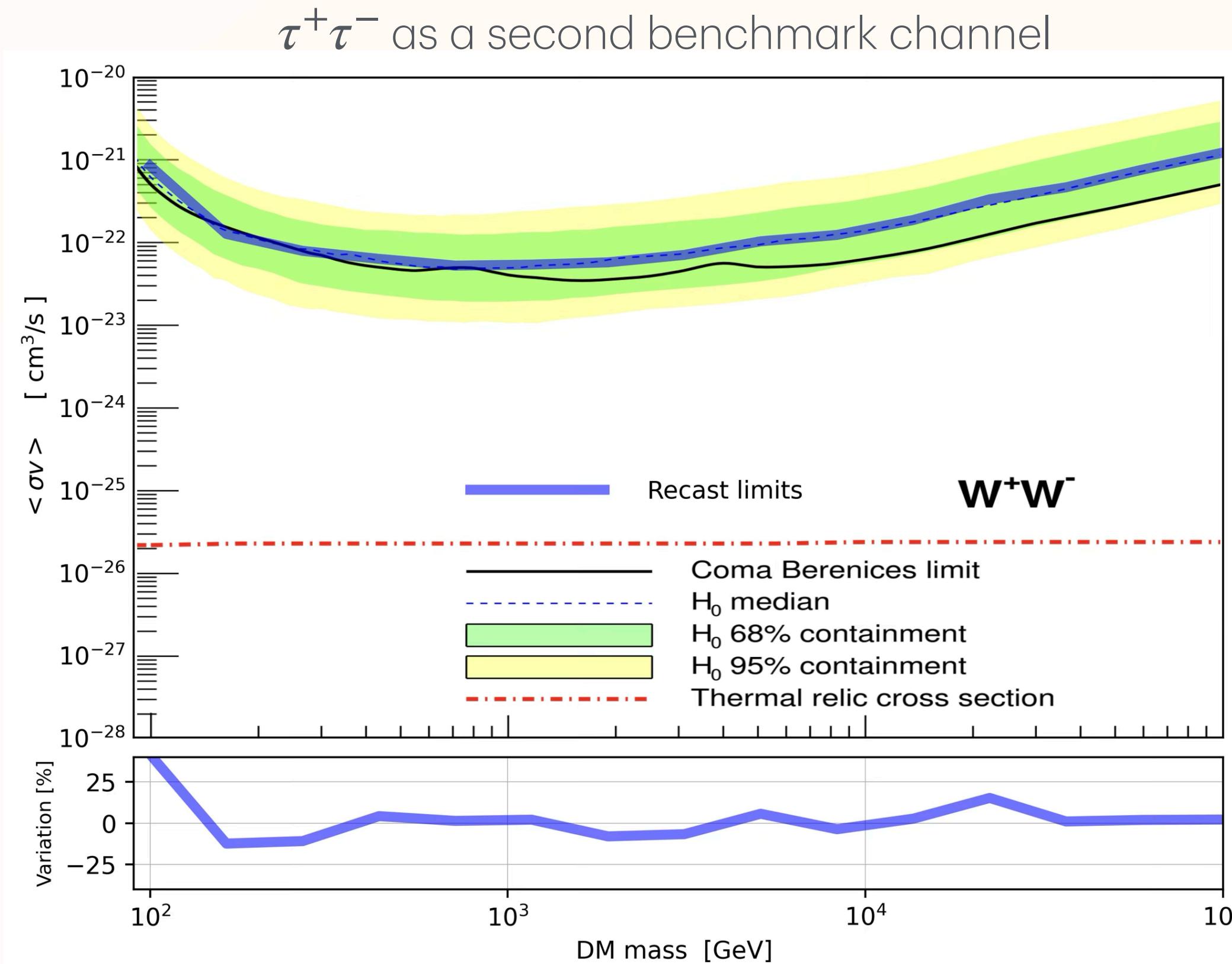
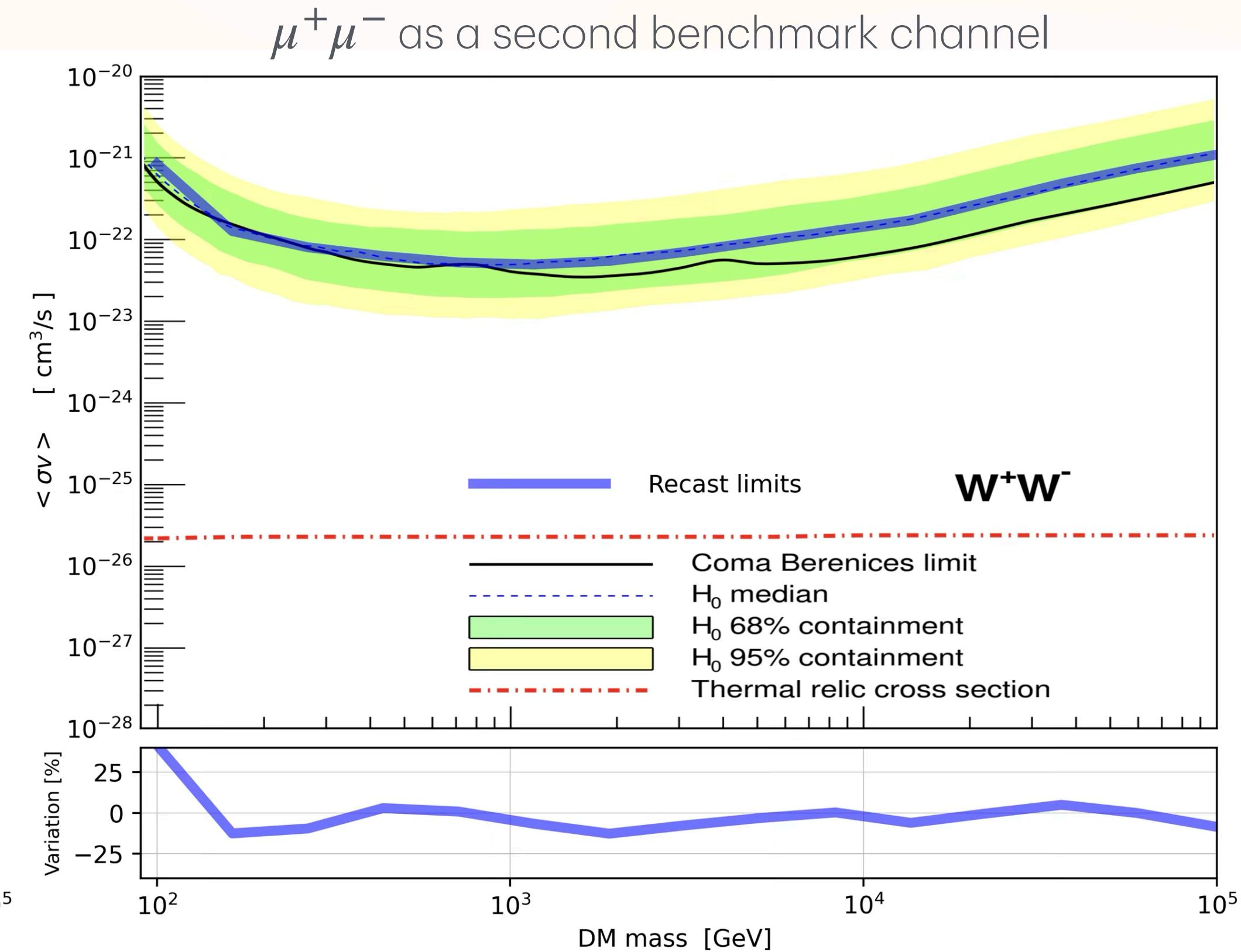
Recasting Across Models - dealing with missing IRF



Recasting Across Models

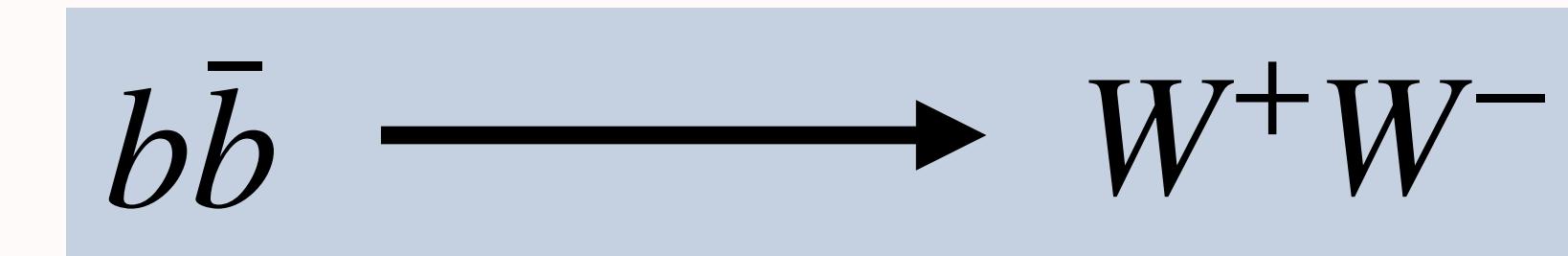
Validation on published ULs from the MAGIC collaboration [1]

[1] Acciari, V.A., et al. (MAGIC), 2022. Combined searches for dark matter in dwarf spheroidal galaxies observed with the MAGIC telescopes, including new data from Coma Berenices and Draco. Phys. Dark Univ. 35, 100912.



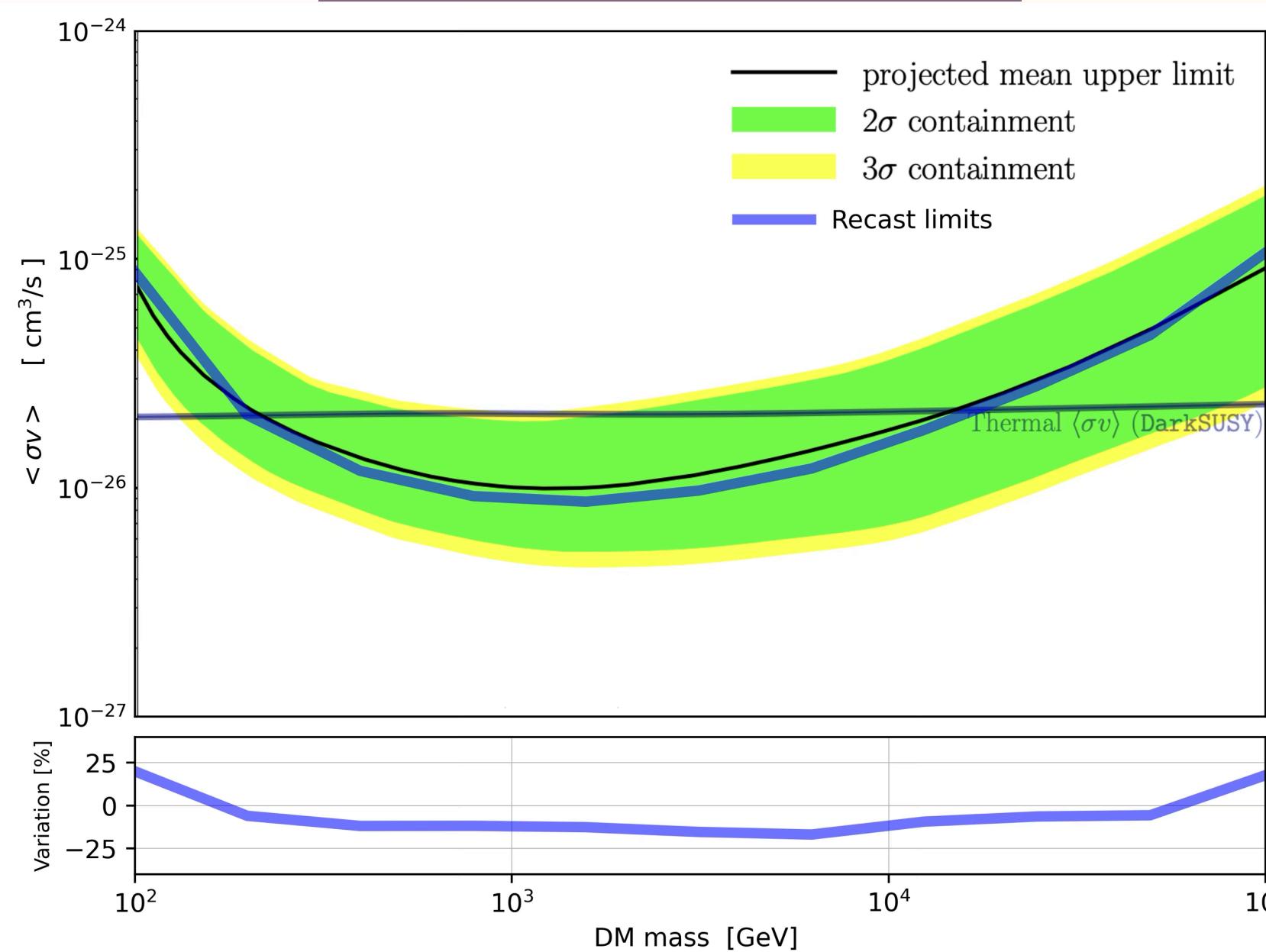
Recasting Across Models

Validation on Published ULs - other instruments

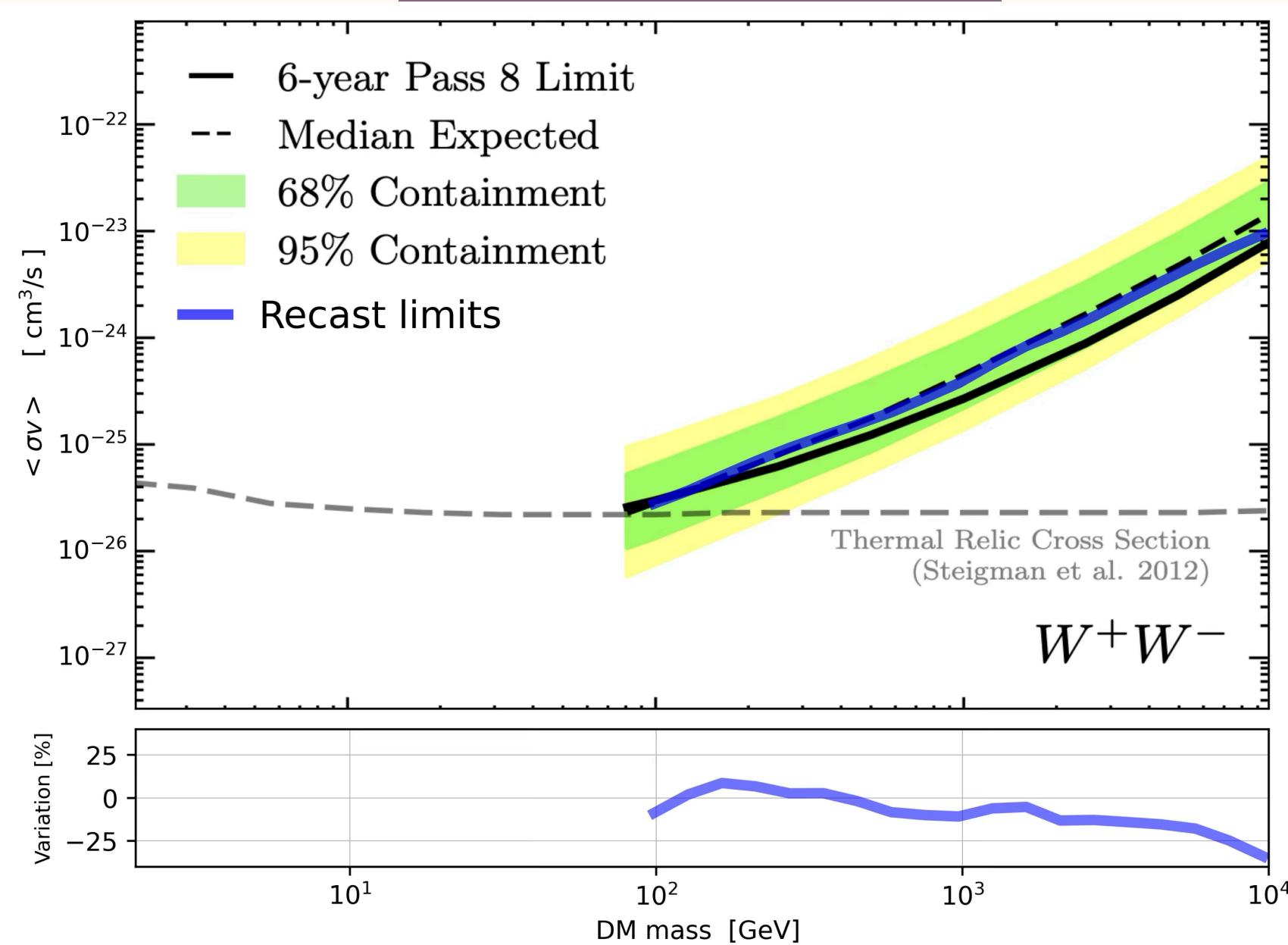


$\tau^+\tau^-$ as a second benchmark channel

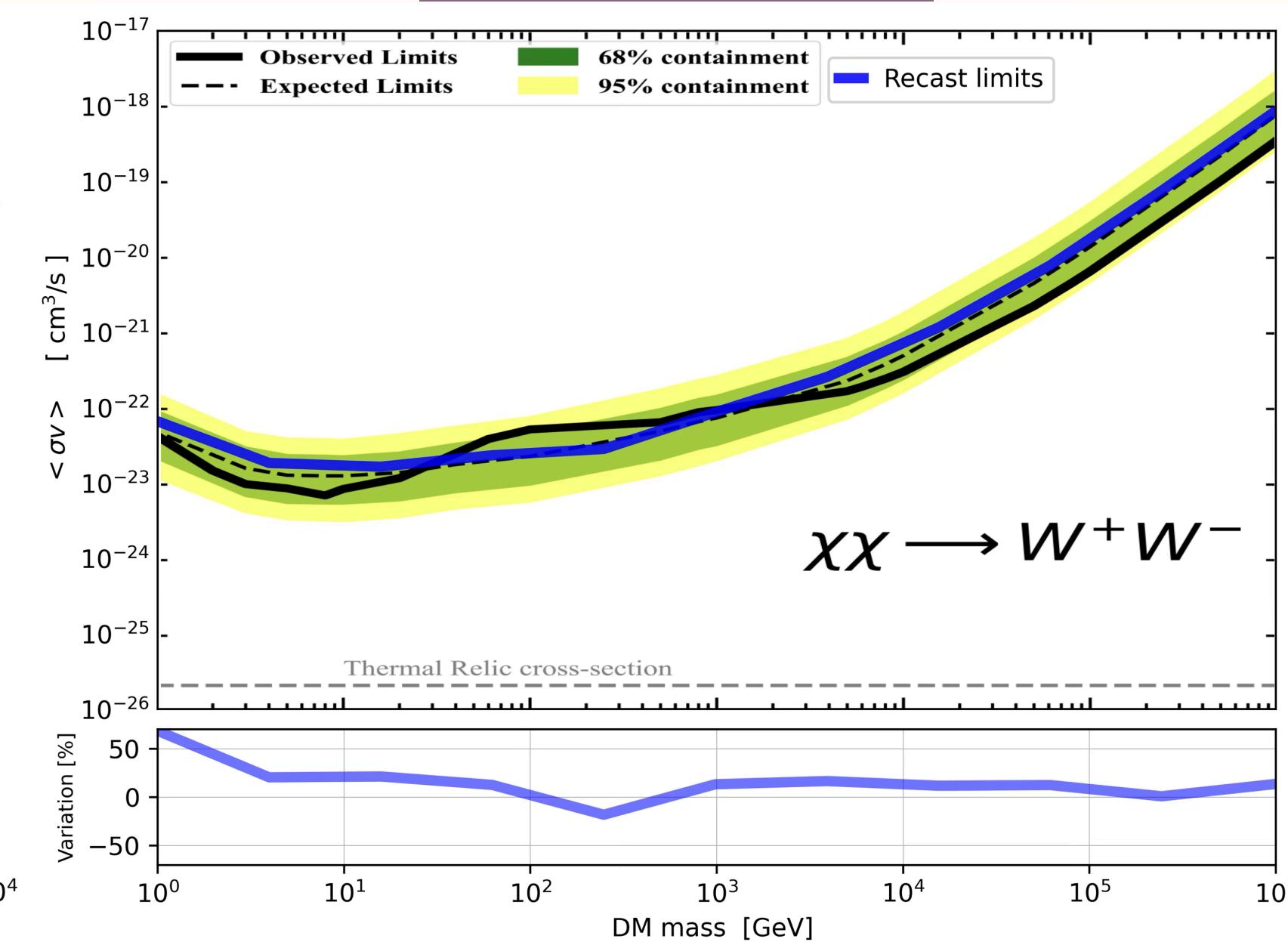
CTAO / GC Projection



Fermi - LAT / dSph



LHAASO / dSph



Acharyya, A., et al. (CTA), 2021. Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre. *JCAP* 01, 057

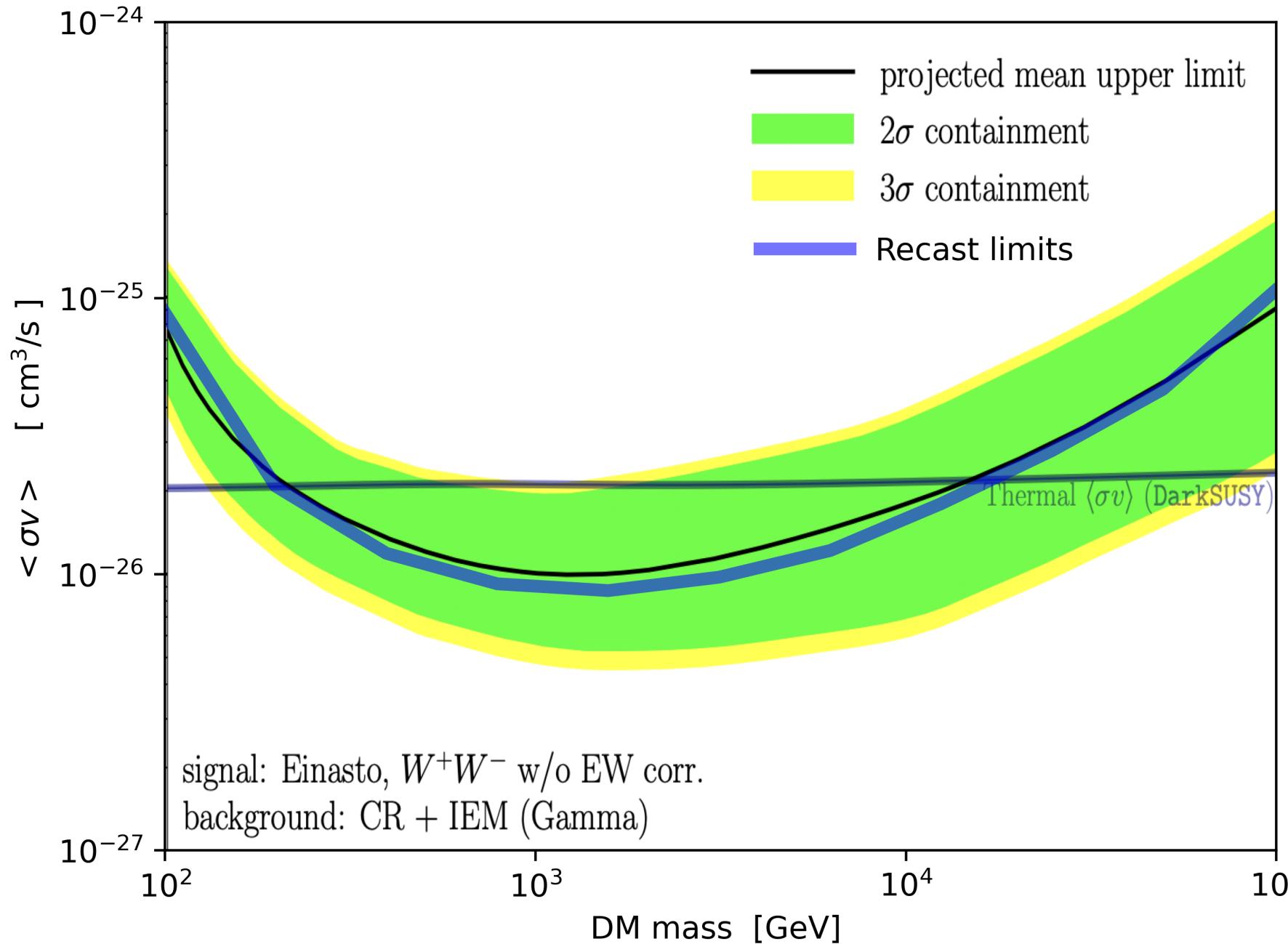
Ackermann, M., et al. (Fermi-LAT), 2015. Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. *Phys. Rev. Lett.* 115, 231301.

Cao, Z., et al. (LHAASO), 2024. Constraints on Ultraheavy Dark Matter Properties from Dwarf Spheroidal Galaxies with LHAASO Observations. *Phys. Rev. Lett.* 133, 061001.

Recasting into new models

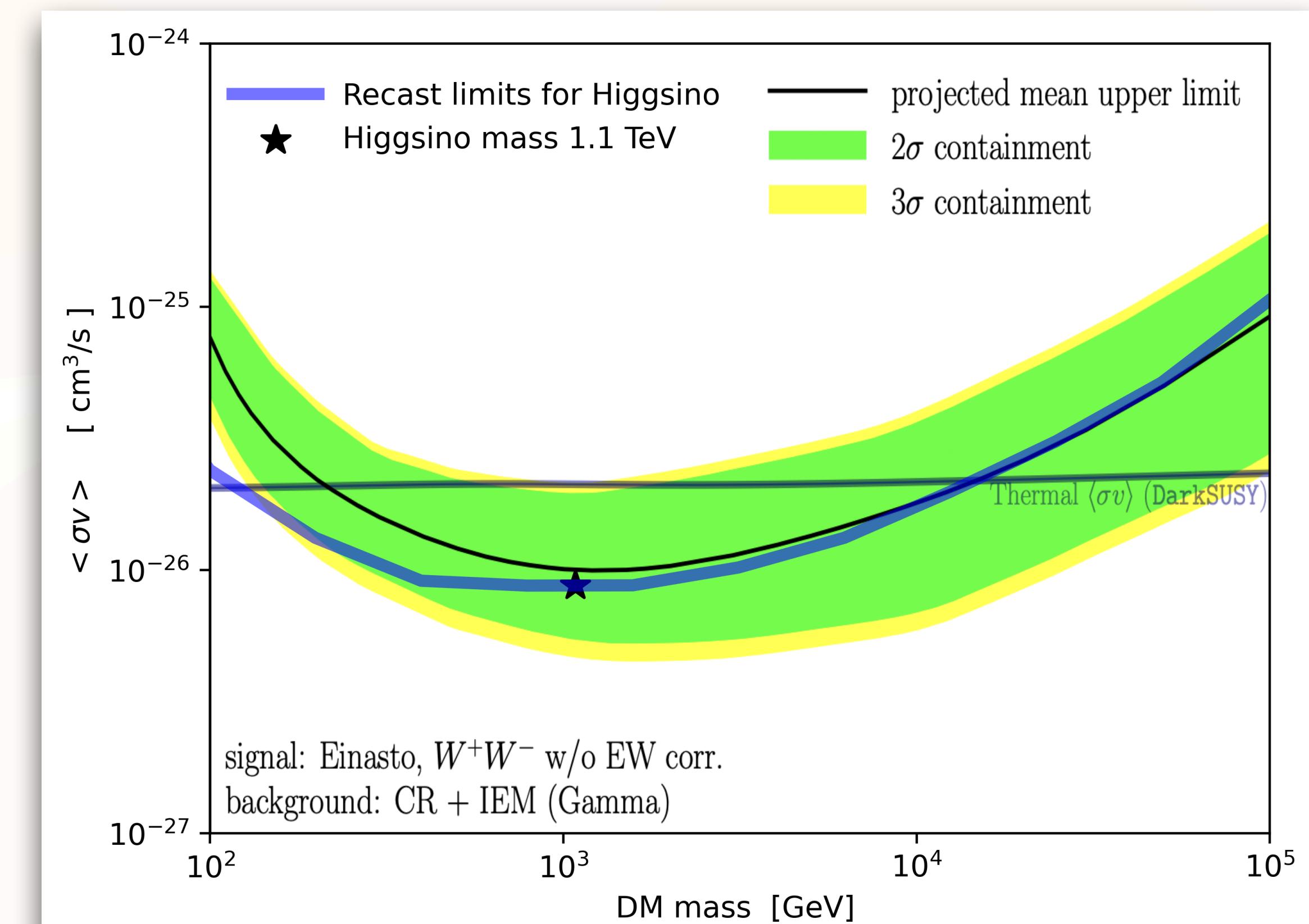
Higgsino-like scenario - CTAO project from GC [1]

Recasting of W^+W^- from $b\bar{b}$



Same recasting but...

of the *Higgsino-like* spectrum with annihilation into W^+W^- , ZZ , $\gamma\gamma/\gamma Z$ with branching ratios $BR_i = 0.611, 0.382, 0.008$ respectively

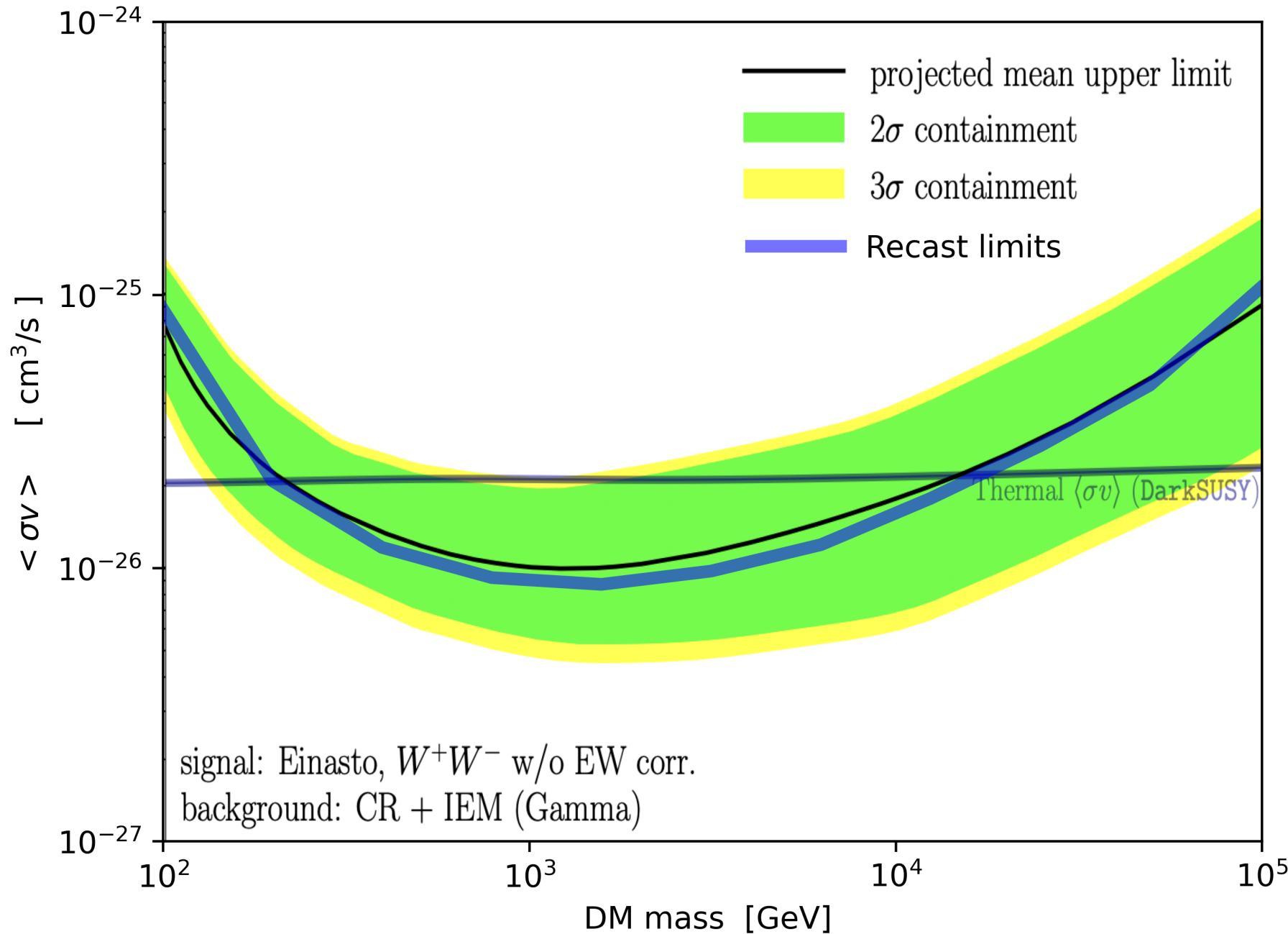


[1] Acharyya, A., et al. (CTA), 2021. Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre. *JCAP* 01, 057

Recasting into new models

CosmiXs-based DM photon - CTAO project from GC [1]

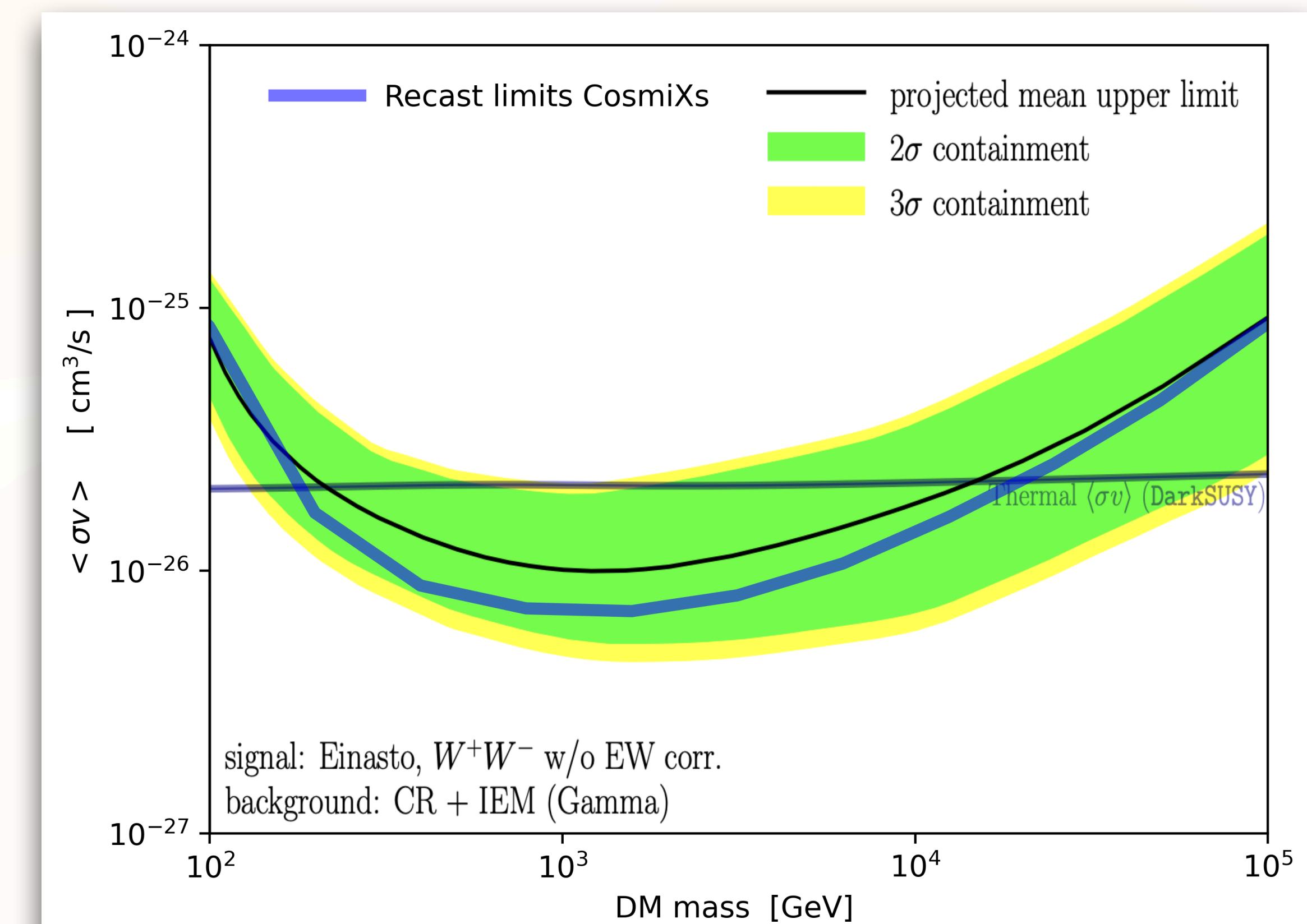
Recasting of W^+W^- from $b\bar{b}$



[1] Acharyya, A., et al. (CTA), 2021. Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre. *JCAP* 01, 057

[2] Arina, C., Di Mauro, M., Fornengo, N., Heisig, J., Jueid, A., de Austri, R.R., 2024. Cosmixs: cosmic messenger spectra for indirect dark matter searches. *Journal of Cosmology and Astroparticle Physics* 2024, 035

Same recasting but...
of the W^+W^- channel with cosmiXs-based spectra [2]
instead of the PPPC ones



Conclusion

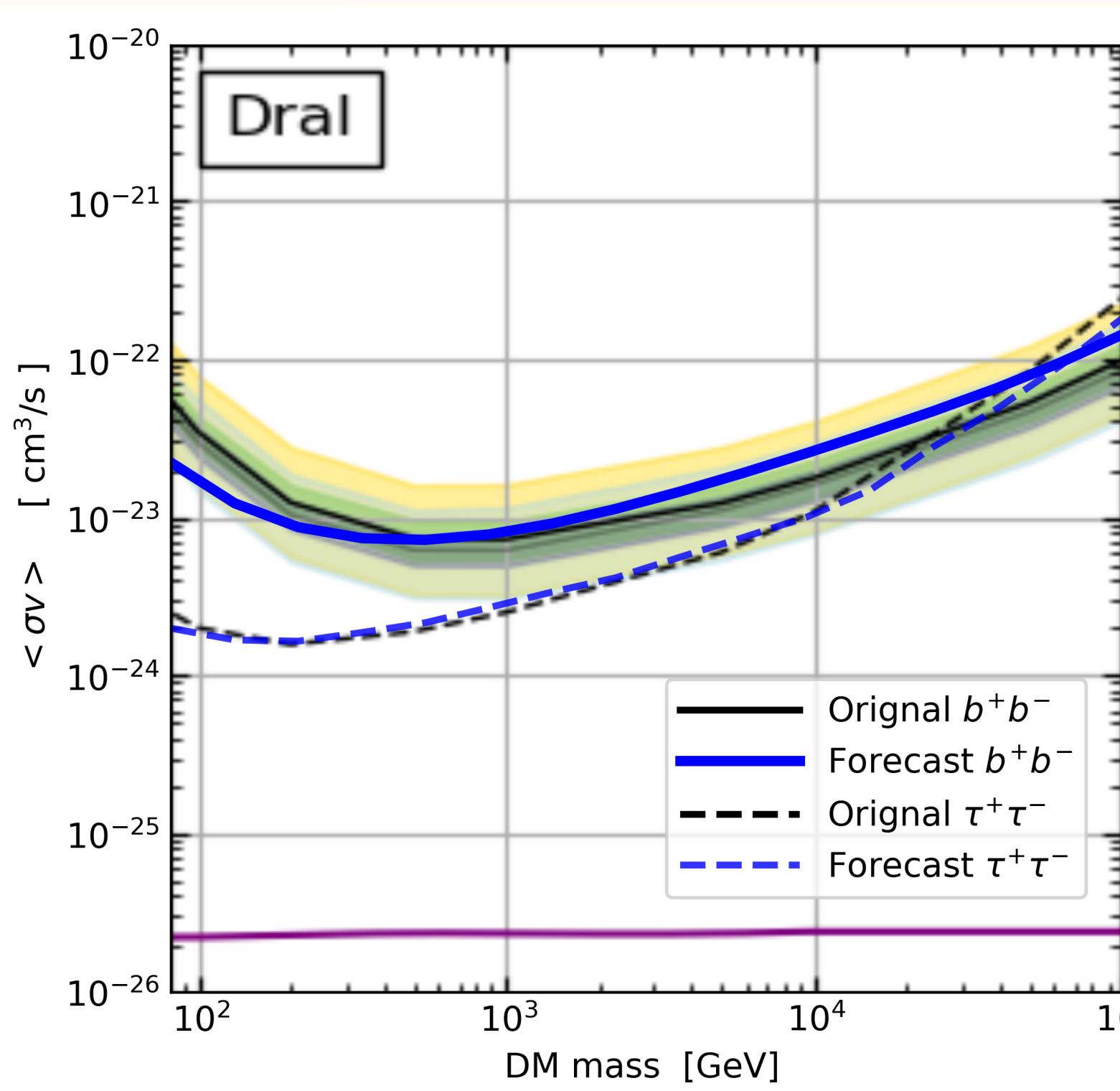
- **This novel method enables recasting of dark-matter limits without raw data**, using only published ULs
- **Validated across multiple gamma-ray telescopes**, reproducing official collaboration results within uncertainties.
- **Forecasting of ULs**: provides sensitivity projections for next-generation experiments such as CTAO.
- **General and portable**: adaptable to any instrument or dark-matter channel (if the DM spectrum varies slowly compared to the instrument energy resolution).
- **Code available**: https://github.com/giacomodamico24/DM_recast_limits

Backup - Recast from annihilation to decay

Annihilation

$$\frac{d\Phi}{dE}(E) = J_{\text{ann}} \cdot \left(\frac{\langle \sigma v \rangle}{8\pi k m_\chi^2} \frac{dN_\gamma}{dE} \right)$$

$$J_{\text{ann}} \equiv \int_{\Delta\Omega} d\Omega \int_{l.o.s.} dl \rho_\chi^2(l, \theta)$$

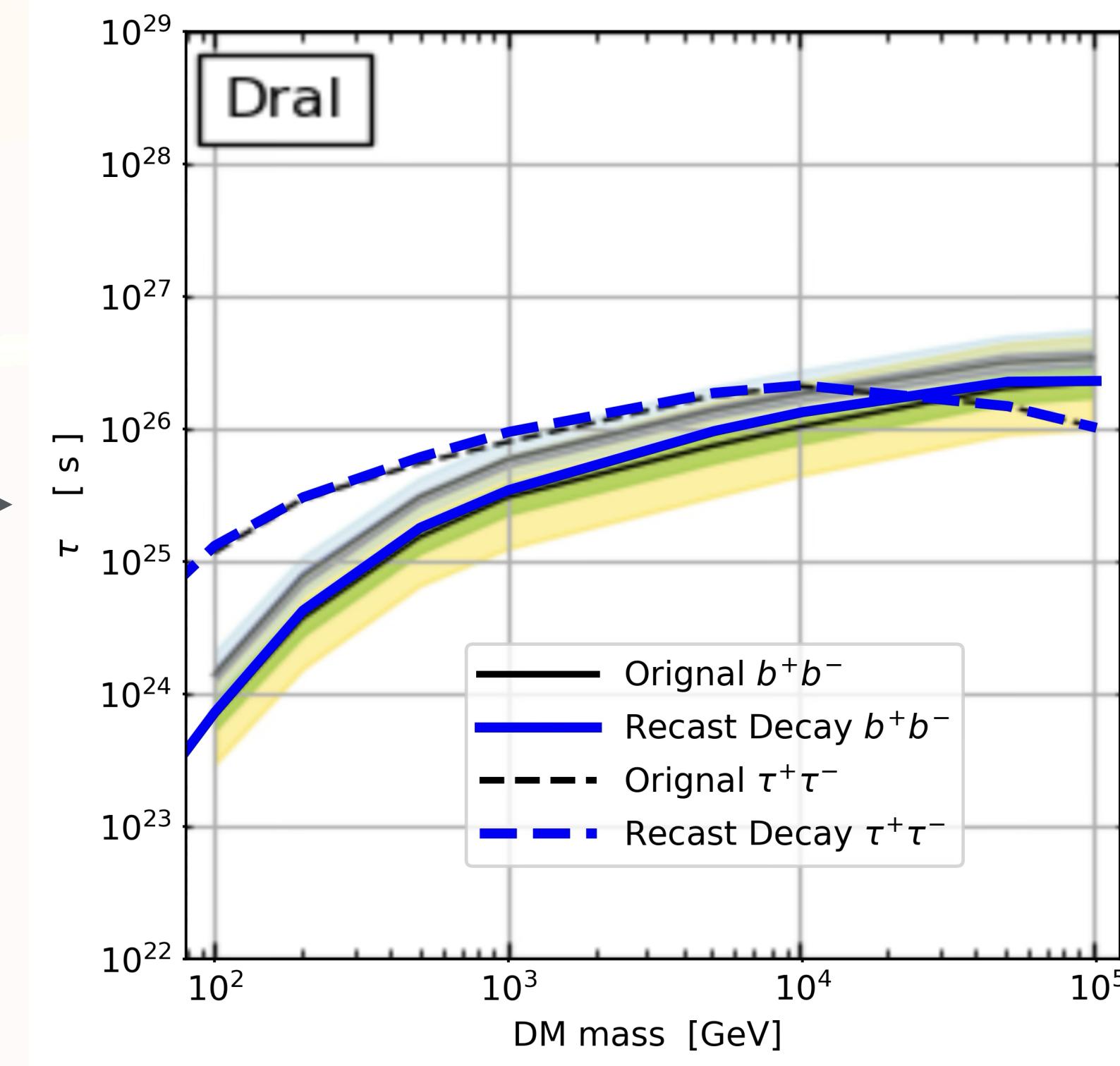


$$\tau^{\text{UL}} = \frac{J_{\text{dec}}}{J_{\text{ann}}} \cdot \frac{m_\chi}{\sigma^{\text{UL}}}$$

Decay

$$\frac{d\Phi}{dE}(E) = J_{\text{dec}} \cdot \left(\frac{1}{4\pi m_\chi \tau} \frac{dN_\gamma}{dE} \right)$$

$$J_{\text{dec}} \equiv \int_{\Delta\Omega} d\Omega \int_{l.o.s.} dl \rho_\chi(l, \theta)$$



Backup - First and second derivative

Cahs case

$$f(s) = s - n \ln(s + b) + C$$

$$f'(s) = 1 - \frac{n}{s + b} \sim 0 \quad f''(s) = \frac{n}{(s + b)^2} \sim \frac{1}{b}$$

Wstat case

$$f(s) = s - n \ln(s + b) + (1 + \alpha)b - m \ln(\alpha b) + C$$

$$b(s) = \frac{n_1(s) + n_2(s)}{2(1 + \alpha)} \quad n_1(s) = n + m - (1 + \alpha)s \quad n_2(s) = \sqrt{n_1^2(s) + 4(1 + \alpha)sm}$$

$$\frac{db}{ds} = \frac{2m - n_1 - n_2}{2n_2} \sim -\frac{1}{1 + \alpha} \quad \frac{d^2b}{ds^2} = \frac{(1 + \alpha^{-1})(n_1 + n_2 - 2m)(n_2 + 2m - n_1)}{2\alpha^{-1}n_2^3} \sim \frac{2\alpha}{(1 + \alpha)^2 b}$$

$$f'(s) = -\frac{n}{s + b} \left(1 + \frac{db}{ds} \right) - \frac{m}{b} \frac{db}{ds} + 1 + (1 + \alpha) \frac{db}{ds} \sim 0$$

$$f''(s) = n \frac{\left(1 + \frac{db}{ds}\right)^2 - (s + b) \frac{d^2b}{ds^2}}{(s + b)^2} + m \frac{\left(\frac{db}{ds}\right)^2 - \frac{d^2b}{ds^2} b}{b^2} + (1 + \alpha) \frac{d^2b}{ds^2} \sim \frac{1}{b(1 + \alpha^{-1})}$$

Backup - Impact of Background Knowledge

Cash statistic

$$\sigma^{UL} \simeq \sqrt{\frac{\lambda}{\sum_i K_i^2/b_i}}$$

Wstat (On/Off) statistic

$$\sigma^{UL} \simeq \sqrt{\frac{\lambda}{\sum_i K_i^2/((1 + \alpha^{-1})b_i)}}$$

Impact of Background Knowledge

$$1 + \alpha^{-1} > 0 \longrightarrow \sum_i \frac{K_i^2}{b_i} > \sum_i \frac{K_i^2}{b_i(1 + \alpha^{-1})} \longrightarrow$$

Cash ULs are
more **stringent**
than Wstat ULs

Backup - Impact of Background Knowledge

Cash statistic

$$\sigma^{UL} \simeq \sqrt{\frac{\lambda}{\sum_i K_i^2/b_i}}$$

Wstat (On/Off) statistic

$$\sigma^{UL} \simeq \sqrt{\frac{\lambda}{\sum_i K_i^2/((1 + \alpha^{-1})b_i)}}$$

Impact of Background Knowledge

$$1 + \alpha^{-1} > 0 \rightarrow \sum_i \frac{K_i^2}{b_i} > \sum_i \frac{K_i^2}{b_i(1 + \alpha^{-1})} \rightarrow$$

Cash ULs are more **stringent** than Wstat ULs

If OFF exposure infinitely larger than ON one

$$\alpha^{-1} \rightarrow 0$$

Cash and Wstat ULs converge

Backup - Advantage of Multi-bin Analyses

Cash statistic

$$\sigma^{UL} \simeq \sqrt{\frac{\lambda}{\sum_i K_i^2/b_i}}$$

Wstat (On/Off) statistic

$$\sigma^{UL} \simeq \sqrt{\frac{\lambda}{\sum_i K_i^2/((1 + \alpha^{-1})b_i)}}$$

Advantage of Multi-bin Analyses

Cauchy-Schwarz inequality

$$\left(\sum_i X_i Y_i \right)^2 \leq \left(\sum_i X_i^2 \right) \left(\sum_i Y_i^2 \right)$$

$$\sqrt{\sum_i \frac{K_i^2}{b_i}} \geq \frac{\sum_i K_i}{\sqrt{\sum_i b_i}}$$

$$X_i = \frac{K_i}{\sqrt{b_i}}, \quad Y_i = \sqrt{b_i}$$

Multi-bins analysis gives **stringent** ULs than single bin analysis

Backup - Recasting Across Models

Validation on MC simulations

We generated 10^5 toy MC realizations under the null hypothesis of no DM signal:

1. We draw Poisson distributed counts n_i (ON region) and m_i (OFF region) in every energy bin
2. Publicly available IRFs of CTAO were adopted
3. Using the binned likelihood, we derived σ^{UL} for each DM mass m_χ and for four annihilation channels: $\tau^+\tau^-$, $b\bar{b}$, $\mu^+\mu^-$, and W^+W^-
4. The factors V_i were inferred using another benchmark channel: W^+W^- (upper case) and $b\bar{b}$ (lower case)
5. The ULs for $\tau^+\tau^-$ and W^+W^- were recast from those of $b\bar{b}$ and $\mu^+\mu^-$, respectively

