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Primordial Black Holes (PBHs)

= PBHs are hypothetical black holes formed in the Early Universe

= Many production mechanisms have been proposed

= |nitial masses can span an extremely wide range — from sub-g scales to 10° M
= Thanks to Hawking Radiation (HR), light PBHs could produce antinuclei

= PBHs are studied as dark matter candidates and as possible sources of exotic
CR signatures
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Galactic antiprotons (p) and antideuterons (D)

We will focus on the energy range 10-1 - 102 GeV

Produced directly at NO: exotic sources

HlmELy CR sources invoked —» WIMP, PBH

CR spallation on the

interstellar medium YES

Secondary



Why galactic antinuclel

Relatively small background expected, especially at energies < GeV
Donato et al. 2000 PRD62(2000)043003; Barrau et al. 2002 AA388(2002)676

Galactic D — one of the cleanest channels for indirect DM detection

Very precise p data Design to detect sub-Gev D
AMS collaboration 2021 PR894(2021)1 Aramaki et al. 2015 AP74(2016)6

No confirmed D detections Launching next year
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https://arxiv.org/abs/1506.02513

PRD112(2025)023003
Goals of our paper - , ... 505 04692

= Compute the top of the atmosphere (TOA) fluxes of p and
D from galactic PBH evaporation


https://journals.aps.org/prd/abstract/10.1103/r6w9-vr6b
https://arxiv.org/abs/2505.04692

PRD112(2025)023003
Goals of our paper - , ... 505 04692

= Compute the top of the atmosphere (TOA) fluxes of p and
D from galactic PBH evaporation

= Compare the p flux with AMS-02 data to constrain the
local PBH density


https://journals.aps.org/prd/abstract/10.1103/r6w9-vr6b
https://arxiv.org/abs/2505.04692

PRD112(2025)023003
Goals of our paper - , ... 505 04692

= Compute the top of the atmosphere (TOA) fluxes of p and
D from galactic PBH evaporation

= Compare the p flux with AMS-02 data to constrain the
local PBH density

= Compare the D flux with GAPS sensitivity to evaluate
detection perspectives
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PBH initial mass distribution

Lognormal distribution Mean value = critical mass [g]
Dolgov et al. 1993 PRD47(1993)4244
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Evaporation

Hawking radiation dM L 8 (M) coefficient

mass loss rate dt - M2

Hawking 1975
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Evolution of mass distributions

The evolved distributions share
the same spectral shape for
M < 10'4g

Due to Boltzmann suppression, p
can only be efficiently produced
for M < 10'4g

The distribution are proportional
to the local PBH density

preu = Preu(Re, 0)

ppgy = 5.6 X 1072 GeV / cm?
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Antinuclel production

MacGibbon 1990 PRD41(1990)3052

= Antinuclei are not directly produced by PBHs

= PBHs emit fundamental particles which can hadronize into antinuclei

HR spectra from BlackHawk code

Evolved mass distribution Arbey et al. 2020 EJC79(2019)693
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Antinuclei source spectrum Summation over all Fragmentation functions from CosmiXs

the emitted particles Arina et al. 2024 JCAP03(2024)035
Di Mauro et al. 2024 2411.04815
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.41.3052

p source spectra

The source spectra share
the same spectral shape
for all values of u. and o

Due to similar evolved mass
distributions
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D source spectra
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Charged galactic CR transport equation

Berezinskii et al. 1990

Source spectra are propagated in the galaxy using the galactic CR transport equation

Space diffusion Number density
coefficient Convection energy spectrum
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Galaxy and propagation models

PBH halo

CRs propagate in a cylindrical diffusion volume:
L~1-10kpc, 2h = 200 pc, R = 20 kpc

Weinrich et al. 2020 AA639(2020)A74

PBHs follow the CDM radial distribution - NFW profile Diffusion halo

Navarro et al. 1996 AJ462(1996)563

We use the transport parameters of the benchmark Galactic disk

configuration BIG
Calore et al. 2022 SPP12(2022)163

We solve semi-analytically the transport equation with
the USINE code to obtain the antinuclei TOA fluxes

Maurin 2020 CPC247(2020)106942
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https://arxiv.org/abs/2202.03076
https://arxiv.org/abs/1807.02968

Statistical analysis with AMS-02 p data

= We aim to derive upper limits (UL) on the local PBH density ppgy, for fixed u. and o
= p fluxes are proportional to ppgy

= We follow the p analysis of Calore et al. 2022, using the most recent AMS-02 data

Calore et al. 2022 SPP12(2022)163; AMS collaboration 2021 PR894(2021)1

Covariance matrix, Nuisance parameter,
for data and transport uncertainties for halo size uncertainties
Boudaud et al. 2020 PRR2(2020)023022 Weinrich et al. 2020 AA639(2020)A74
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PBH parameters z; = PP — (L, p)
(e, 0, ppBH)
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https://arxiv.org/abs/2202.03076
https://ui.adsabs.harvard.edu/abs/2021PhR...894....1A/abstract
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95% CL upper bounds on fpgy
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Comparison with bounds in literature
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p flux upper limit

Flux computed using ppsyy, for
fixed u. and o

Primary flux peaks at 1-2 GV
Secondary flux (computed in

Calore et al. 2022 ) provides a
strong constraining power

The flux spectral shape does not
depend on u. and o

The flux UL remains the same for
all values of u. and o
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https://arxiv.org/abs/2202.03076

p flux and GAPS simulated data

We consider a set of simulated
data from GAPS at lower energies
Rogers et al. 2023 AP145(2023)102791

GAPS could improve the constraints
on ppgy by a factor ~ 2
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https://arxiv.org/abs/2206.12991

D flux upper limit

Flux computed using pp5y from
the p analysis, for fixed u. and o

The flux UL remains the same

for all values of u. and o

Primary contribution is dominant
at sub-GeV energies

D flux UL does not reach
experiment sensitivities
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Conclusions

= We computed p and D fluxes
from PBHSs, using state-of-the-

art CR propagation models

The resulting fluxes exhibit
universal spectral shapes,
independent of the PBH initial
mass distribution
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Conclusions

We computed p and D fluxes
from PBHSs, using state-of-the-

art CR propagation models

The resulting fluxes exhibit
universal spectral shapes,

independent of the PBH initial

mass distribution
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= AMS-02 p data provide
strong constraining power:
we derived very competitive
upper limits on fpgpy,
sensitive to the choice of the
PBH initial mass distribution
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Conclusions

We computed p and D fluxes
from PBHSs, using state-of-the-

art CR propagation models

The resulting fluxes exhibit
universal spectral shapes,

independent of the PBH initial

mass distribution
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AMS-02 p data provide
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At sub-GeV energies, PBH-
induced D fluxes could
dominate over astrophysical
backgrounds

Due to p constraints, any future
detection of D could be, at most,
only partially attributed to PBHs
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PBH initial mass distributions

Galactic coordinates PBH mass at t=0 Number density
spectrum at t=0

d [977 cm3]

L NPBH
g(r, z, M) = M;
d M;
Lognormal distribution Mean value = critical mass [g]
Dolgov et al. 1993, PRD47(1993)4244
_ 5 _
Y B A log®(Min/ pte)
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PBH density [GeV/cm?] Standard deviation



Hawking radiation (HR) and PBH mass evolution

Hawking 1975, CMP46(1976)206
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Alfa/evaporation parameter

TBH [MeV]
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Propagation model

Genolini et al. 2019, PRD99 (2019)123028
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Statistical analysis with AMS-02 p data

= We aim to derive upper limits (UL) on the local PBH density ppgy, for fixed u. and o
= p fluxes are proportional to ppgy

= We follow the p analysis of Calore et al. 2022, using the most recent AMS-02 data

Calore et al. 2022 SPP12(2022)163; AMS collaboration 2021 PR894(2021)1

Covariance matrix, Nuisance parameter,
for propagation uncertainties for diffusion-halo uncertainties

Log-likelihood function Boudaud et al. 2020 PRR2(2020)023022 Weinrich et al 2020 AAG39(2020)A74
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Upper limits (UL) on ppgy

p fluxes are proportional to the local PBH density ppgy

For fixed u,. and o, we rely on this likelihood ratio (LR):

given

LR(/OPBH) = _21H£(Lmin;pPBH) + 21n E(Lfa )O’PBH)

free

Assuming Wilks’ theorem, the LR is distributed as x* with 1 d.o.f. (opgy)

The 95% confidence level UL is obtained finding the ppgy Which increases the LR by 3.84

Calore et al. 2022, SPP12(2022)163
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