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Dark matter : WIMPs

® Dark Matter (DM) exists and provides ~25% of the energy density of the Universe

® \Weakly Interacting Massive Particles (WIMPSs) : one of the most popular candidates for DM
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Searches for WIMP DM in photon observations from the inner Galaxy

® Photon signals from inner Galaxy: the observables consist of mainly two types of photon signal
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® Prompt radiation: High-energy Y- rays are produced directly in the WIMP annihilation process
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® Prompt radiation: High-energy Y- rays are produced directly in the WIMP annihilation process

® Secondary radiation: Galactic WIMP annihilations generate abundant energetic e’
which subsequently emit through Inverse Compton scattering (ICS) , bremsstrahlung

» Comparatively lower-energetic gamma-rays photons

» Enhanced for the lepton-rich annihilation channels of WIMPs

e.g., DMDM — ete~ , DMDM — u*u~




Prompt and secondary photons from WIMP annihilations in the Galaxy

mpm =10 GeV, DMDM—-u*u~, (ov)=3x 10720 cm3s!
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® Secondary photons from WIMP annihilation in general populate the Sub-GeV energy range

(MeV - GeV)



MeV Gap and upcoming MeV Y- ray telescopes

® One potential difficulty for detecting the secondary emissions: relatively poor sensitivity of
existing telescopes (COMPTEL, EGRET, Fermi-LAT, etc.) in the sub-GeV range

/

[
=)

SPI

o
—

COMPTEL

-10

IBIS-P1

—t
—

EGRET/

N/

MAGIC

HESS/VERITAS
10

Fermi-LAT HiSCORE

10

Sensitivity (erg em™ s'])

MeV gap

IIIIuJ [ Illliu_l 1 Illl||‘ 1

-2 -1 2 3 4 5 6 7 8 9 10
10 10 1 10 10 10 10 10 10 10 10 10 10

Energy (MeV) Angelis et al., (2102.02460)

® The upcoming space-based MeV telescopes will efficiently fill the MeV gap with better sensitivity

= COSI|, AMEGO, e-ASTROGAM, GECCO, AJEPT, PANGU, GRAMS, MAST,

® Potential of these MeV telescopes in probing WIMP DM, based on the secondary emission ?

5



MeV-GeV photons from WIMP annihilations in the Galaxy

® Target region for observation: a disk of 10° radius around the galactic Center (GC)
=> same order as the maximum angular width of the MeV telescopes
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MeV-GeV photons from WIMP annihilations in the Galaxy

.. (s,b,l) - Galactic coordinates
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MeV-GeV photons from WIMP annihilations in the Galaxy

® Secondary Y - ray emission flux:
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Inter-Stellar Radiation Field (ISRF) : CMB, infrared (IR), starlight (SL)
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MeV-GeV photons from WIMP annihilations in the Galaxy

(s,b,l) » Galactic coordinates

® Secondary y - ray emission flux: cosh cosl = cos 0
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MeV-GeV photons from WIMP annihilations in the Galaxy

e Distribution of WIMP induced e~ in the galaxy :
(crv) dN, 4/
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Source function from WIMP annihilation :

bio(E., X) : total energy loss rate of e~ ‘ Dominating process near the GC region

2 ICS on ambient photons 2 Coulomb interactions with interstellar gases
> synchrotron emission in galactic B-field = ionization of the same gases
2 bremsstrahlung on the same gases
Buch, et al., (PPPC 4 DM, [1505.01049]))



MeV-GeV photons from WIMP annihilations in the Galaxy

e Distribution of WIMP induced e~ in the galaxy :
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Source function from WIMP annihilation :

bio(E., X) : total energy loss rate of e~ ‘ Dominating process near the GC region

2 ICS on ambient photons 2 Coulomb interactions with interstellar gases

> synchrotron emission in galactic B-field = ionization of the same gases
2 bremsstrahlung on the same gases

Buch, et al., (PPPC 4 DM, [1505.01049])
= Full-propagation of e*:
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MeV-GeV photons from WIMP annihilations in the Galaxy
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MeV-GeV photons from WIMP annihilations in the Galaxy
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WIMP annihilation signals at the MeV telescopes
® MeV telescopes : AMEGO, e-ASTROGAM and MAST 0.2 MeV s E, < 5 GeV
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WIMP annihilation signals at the MeV telescopes
® MeV telescopes : AMEGO, e-ASTROGAM and MAST 0.2 MeV s E, < 5 GeV
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Projected sensitivities for WIMP (leptonic annihilations)

Existing constraints: CMB + X-rays + Y -rays + AMS e* + neutrinos
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® Future space-based MeV gamma-ray telescopes will complement the ground-based
high energy gamma-ray instruments in the indirect searches for weak-scale DM
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Projected sensitivities for WIMP (hadronic annihilations)

Existing constraints:
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® Future space-based MeV gamma-ray telescopes will complement the ground-based

high energy gamma-ray instruments in the indirect searches for weak-scale DM
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Effects of propagation of e~ in the Galaxy

(ov) (cm3.s71)

Prop. 1 : propagation model from [Strong et al., (1008.4330), (1101.1381)]

Prop. 2 : propagation model from [Calore et al., (1409.0042)]
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used also to estimate the
secondary photon BGs

towards the GC region
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Summary

® We explore the potential of the upcoming MeV telescopes in probing the photon signals from
weak-scale DM annihilations in the Galaxy

® Low-energy secondary emissions (e.g., ICS and bremsstrahlung) produced by DM induced e~
significantly enhance the sub-GeV Y- ray signals of weak-scale DM annihilations

(for lepton-rich annihilation channels)

Z> Significant enhancements in the sensitivity of MeV telescopes in probing weak-scale DM
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Importance of considering the secondary signals for WIMPs
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Impact of the choice of DM profile
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ISRF
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Galactic B-field models
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Galactic gas map models
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Photon backgrounds from the inner Galaxy
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Systematic uncertainties in the backgrounds
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Siagnal-to-noise ratio and Fisher methods

DMDM-pu*u~

e . | — — 1

Ko E —— existing ID bounds -

E & - s

Fl— CTAGC | Tmme—e—e—mmmmmC Wk

10724 g - CTA dSph Vi

r {OV)thermal /."'/"‘( ./"E

r
—_ 10_25 3 ‘:-"‘. /’ 3 —_
7 : i

L z - =
V10720 2P o - 7
mE £ == ."0.. R /‘-"" 3 ME

=" e s : .
S 10-27 . /,’ . . :-;/’-__,..‘-‘ (This work) 3 o
< F /;/’ :.:"" —— conservative upper bounds 3 <
B 10-28¢ _ BB S el AMEGO (SNR) 1 B

J i —— AMEGO (Fisher) 3

1020k 277 ‘ e-ASTROGAM (SNR) i

E gl e-ASTROGAM (Fisher)

10-30 & et MAST (SNR) ]

Eooe —— MAST (Fisher)

C 1raaad L T N B | 1 el L L1l L L

10° 101 102 103 10

mpwm (GeV)

Fisher-projections :

Emax

-7:1';' = Lobs J‘
JErm'rl

d(I)SIG

dE,dQ

dE, A,

$or(6) = (rs16)

SIG _

1 a¢t0ta¢t0t
$ror 96; 0;

} fiducial

BG ABG BG BG
QTEO ? HICShi’ QICSIO’ 9egj|

AQ

d®l .
dE,dQ

+Z QIBG{
I

-

g =

vV (F )1

I:FSIG’ HBG

brem?

)5_@

DMDM->W*W~

" ' e — — oz
” | — existing ID bounds = Tttt Io===—=t-——--TC ;‘;“5”
_ > :
107" F— cTaGC o E
£ --—-- CTA dSph 2227 e e 3
R, ‘;"_”) __________ -7
= =2
10_25 E:‘ {OV)thermal T - 2

________
------
______

-----
......
L

o
‘‘‘‘‘

'
......

______

Fikd

0-%F -

N T , ':/" ................ (This work)
e ’ gl gl —— conservative upper bounds
10_27 L e ’ ’/’ ..................... AMEGO (SNR) -
B P —— AMEGO (Fisher) :
e’ et e-ASTROGAM (SNR) ]
s e-ASTROGAM (Fisher) |
10 E' ....... MAST (SNR) ?
r —— MAST (Fisher) ]
102 103 104
mpm (GeV)
signal-to-noise ratio (SNR) :
NriDM > 5
ducial '\/ NleG
E
N, = tops J dE, Acer(Ey) dQ2 15 4O
E in AQ Y

M. Cirelli, A.K.; (2503.04907v1)



Atmospheric backgrounds
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