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Survival of CDM substructure

The innermost part of the
van den Bosch+18 subhalo is not obtained

Cuspy subhaloes are supposed to survive 0Ogiya+19 accurately when the numerical

the host tidal forces: bound remnant Errani+Pefiarrubiadds 04"\ resolution is insufficient

Many are missing in (zoom-in) cosmological i ch
y 5 sltdlne |os+Wh|t 103

simulations: limited by numerical resolution

A very high number of particles is needed to £ w0
resolve the inner cusp properly & N
2 N=2%
How to overcome this? -
* Semianalytical approaches N=2"
e Focusing the computational resources on an Vo2 sembandyied |
individual subhalo 4 2 _ 1())—1 10°
The subhalo DM density * AAS+23
~ profile gets trunc as o A

the mass Ioss tak@p ace
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Focusing on individual subhaloes

High-resolution numerical simulations (DASH, Ogiya+19) to follow the
evolution of the subhalo

Time-evolving host containing DM halo + baryonic disc + bulge

Several subhalo initial parameters are varied:
* Innerslope
* Orbital configuration (circularity, orbital energy, inclination angle)

e Accretion redshift -
-300 -200 -104 o

e (Concentration

: : _ den Bosol4Citijekis
We already studied the evolution of the subhalo bound mass fraction (f,) Tan AR it Tt

and annihilation luminosity (AAS+23)

Previous work has also explored the evolution of the subhalo internal
structure parameters: Pefiarrubia+10 (P10), Errani & Navarro 21 (EN21),
Du+24 (D24), Green & van den Bosch 19, Stlicker+23 (including AAS), ...
what do our simulations say?

N =222 ~ 3.3 x 10/ particles in most cases 02 03 04 05 06 07 08 09 10

a

AAS+23



Circular velocities

How do (maximum) circular velocities evolve as the subhalo loses mass? __
What about the radius where this V. is located (r..,)? &l dal Tracks:.

How does this evolution of V.., and r,.., impact subhalo concentrations?
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Evolution of internal structure
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Both V.. and r.., decrease mainly at the pericentre (stronger tidal forces)

A stable tidal track can be found looking at the apocentre, but we want to
explore the behaviour at the pericentre as well

V.ax decreases less than r, ., ; rmax D€COMes more stable with time AASED5



Tidal tracks for NFW subhaloes

Apocentre tidal track
V. s - i, below pericentre
curve reflects V.

max

increase at pericentre

Apocentre tidal track
consistent with P10

Pefiarrubia+10 (left):
28 xV

(14 x)#
EN21 (right):

g(x) = 2%xP[1 + x?]¢

g(x) =

apo
peri
— fitapo, #=0.38 v=0.30

— — fit peri, #=0.60 v =0.32
P10
- D24
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fit peri, a=0.59 f=0.74
P10 (fy fit)

= D24 (f, fit)
EN21
Stiicker+23 (adiabatic)
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» D24 ——- Stiicker+23
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Steeper than NFW: prompt cusps

* The first DM haloes (~Earth mass in CDM) formed from density peaks
, : e - _3/2 (Ishiyama+10)
* Their density profile is supposed to exhibit a prompt cusp: p < 7 4 .
(Delos+White23)

e Even stellar encounters can have an impact on such small structures!

NFW-like

before

0.01pc

P [Msolar pc_3]

-3

radius [pc]

Delos+White23 Ishiyama+10




Tidal tracks for prompt cusps

V.. decreases less wrt

Mmax

NFW subhaloes

Pericentre tidal track
reaches the apocentre
tt faster

Our fits lie between
D24 and P10

Pefiarrubia+10 (left):
2K xV

(14 x)#
EN21 (right):

g(x) = 2%xP[1 + x2%]7¢

g(x) =

log (diff. wrt apo)

apo
peri
—— fitapo, p=0.16 v=0.19
— — fit peri, p=0450v=0.23
P10
- D24
NFW apo (this work)
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Subhalo concentrations

Concentrations‘increase
with time since r,.,
decreases more than V.,

2)

cy increase ~ two orders of
magnitude (vs ~ one oom
for field halos)

We find a significant
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Summary & conclusions

After our survival work AAS+23, now we characterise subhalo tidal tracks with great
particle resolution (O(107) particles)

Extensive initial configuration parameter space: inner slopes (NFW & prompt cusps),
concentrations, orbital parameters, accretion redshift. The host is described with a
time-evolving analytical potential including baryons

Our results show:

* Both V., andr,, decrease with time

* While r, shrinks more than V..., , its rate of decrease diminishes with time
* First prompt cusps tidal track V.. - rmax @nd pericentre tidal tracks

* Prompt cusps remain more stable (larger V., ) than NFW

» Velocity concentrations increase with time up to 2 orders of magnitude,
this way enhancing concentrations wrt field haloes

Relevant for lensing, streams, indirect DM searches
Check it out! arXiv:2506.01152 alejandra.aguirre@uv.es
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Tidal track dependenceon z___

* apo : *  apo
— fitapo, =038 v=0.30 —— fitapo, a=0.44 =0.72
— — fit peri, u=0.61 v=0.32 7 T —— fitpert, a=0.58 =0.74
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Tidal track dependence on n

*  apo
— fitapo, =038 v=0.30
— — fit peri, u=0.61 v=0.32
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Tidal track dependence on ¢
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The nature of DM

e \We still do not know what DM is made of:
particle zoo

Weakly Interacting Massive Particles (WIMPs)
among the preferred ones

m'lllHu LY
¢ direct production at colliders T
. . . = neutralino j
% direct detection through scattering o
: : ; o =
“* indirect detection & -
possible annihilation products: 8 - axiona i axino ’
_— — . = Flt::.li:llilrflln N
. - Zravitino gq

keV  GeV

-12 -9 -6 -3 0 3 6

log 1olmpyy / GeV)



The ‘golden channel’: gamma rays

e Neutrinos are difficult to detect

* Antimatter can be deflected by
magnetic fields and loses energy

v'Gamma rays travel following
straight lines and do not undergo
attenuation

* Energy of annihilation products
depends on DM particle mass:
~GeV-TeV

* y-rayflux: F=J- £

\
J-factpartisteopiysiicafactor:

DM efeersity v garticle mass
and cross section

18
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Best tools in the non-linear regime

Zoom-in simulations help analyse the details
and substructure of haloes

Limited by numerical resolution ——  N\y

Subhaloes with masses smaller than several
times the particle mass cannot be simulated

10°

How to overcome this?

e\l
» Repopulation procedure: ge.nera_tin.g \Pgse“““
subhaloes below the resolution limit of the ae*
parent simulation via extrapolation

» Focusing the computational resources on an
individual subhalo

Springel+08
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