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• QML combines quantum computing with classical learning to enhance pattern extraction and
data-driven prediction, showing promise in classification, reinforcement learning, and generative
modelling.

• While early efforts have addressed univariate time-series prediction, there is still no clear
state-of-the-art methodology for tackling multivariate time-series forecasting within the
quantum paradigm.

• Classical deep learning models, especially Transformer architectures, achieve strong results
through attention mechanisms that capture inter-variable dependencies, though at high
computational cost.

• This work extends QML to the multivariate regime, exploring several quantum and hybrid
architectures and introducing a novel quantum Transformer model for multivariate forecasting.

• We compare their performance against leading classical and hybrid baselines on both synthetic
and real-world datasets.

Introduction and Motivation

Models were implemented using the PennyLane quantum ML framework.
1. Baseline VQC with independent channels:

• Each input channel is encoded into its own quantum circuit with as many qubits as time steps,
using single-parameter RY rotations.

• No cross-variable correlations are modeled.

2. Hybrid VQC + Post-Quantum MLP:
• Same independent-channel design, followed by a shallow MLP to capture inter-channel

correlations from circuit outputs.

3. Dense embedding VQC:
• All channels jointly encoded in one circuit via RZ–RX–RY rotations (qml.Rot), up to three

channels per qubit.
• Two variants:

· Multi-observable single-qubit: measure Pauli X , Y , Z on one qubit per channel.
· Single-observable multi-qubit: measure Pauli Z on three qubits.

4. Hybrid Encoder–VQC–Decoder:
• A classical encoder maps inputs to a lower dimension, processed by one quantum circuit; a

classical decoder restores the output size.

5. Sequential Data Re-uploading:
• Each time step is sequentially encoded in the same circuit, alternating encoding and variational

layers.

QML for Multivariate Time-Series Forecasting

• Variables are embedded as tokens (iTransformer paradigm); attention operates across variables,
while feed-forward networks act along time per token.

• The classical self-attention is replaced by a Quantum Self-Attention Layer (QSAL) based on
VQCs (QSANN): queries, keys, and values are produced by separate variational circuits.

• Attention coefficients arise from Gaussian projections of query/key measurements; outputs
aggregate value measurements across variables via residual connections.

• The QSANN ansatz uses layers of single-qubit rotations with entangling CNOTs, repeated p
times; depth and qubit count control expressivity and parameter efficiency.

Quantum Transformer Model: iQTransformer

• Synthetic dataset — Lorenz system: a 3-channel chaotic system defined by the Lorenz equations.

• Real dataset — ITER: a 7-channel dataset from a wind turbine in Tenerife, Spain, covering
four months of operation in 2024. Variables include total energy demand, renewable generation,
normalized power, wind speed/direction, and curtailment setpoint (target variable).

• Two forecasting regimes were considered: short-term (ST) and long-term (LT).
· ST: next prediction point computed from every 5 ground-truth points.
· LT: for Lorenz, the next 5 points are predicted; for ITER, 3.5 days of data are used to forecast
the next 6 hours.

Experimental Setup

• Validation metrics (MAPE, MAE, RMSE) are reported for all implemented models, averaged
over 10 random initializations. Additionally, state-of-the-art classical (1D CNN) and quantum
(QGRU) baselines are included for comparison.

Model MAPE MAE RMSE
Lorenz ITER Lorenz ITER Lorenz ITER

Short-Term Forecasting
VQC (indep.) 0.0353 0.1490 0.0173 0.0905 0.0281 0.1341
VQC + MLP 0.305 0.1037 0.139 0.0522 0.184 0.0963
DE. (obs.) 0.117 n/a 0.0558 n/a 0.0982 n/a
DE. (qubits) 0.116 n/a 0.0563 n/a 0.0985 n/a
Enc.–VQC–Dec. 0.454 0.3800 0.210 0.3435 0.259 0.3574
Data re-upload. 0.0388 0.0518 0.0192 0.0353 0.0308 0.0534
QGRU 0.432 0.1852 0.195 0.1205 0.243 0.1577
1D CNN 0.204 0.0798 0.082 0.0434 0.101 0.0741
iTransformer 0.00807 0.0154 0.00394 0.0069 0.00636 0.0354
iQTransformer 0.00857 0.0152 0.00414 0.0071 0.00668 0.0351

Long-Term Forecasting
VQC + MLP 0.235 n/a 0.0976 n/a 0.127 n/a
Enc.–VQC–Dec. 0.283 0.0947 0.114 0.0477 0.141 0.1076
1D CNN 0.235 0.1191 0.0954 0.0515 0.122 0.1241
iTransformer 0.0498 0.0874 0.0234 0.0352 0.0371 0.1050
iQTransformer 0.0490 0.0849 0.0230 0.0340 0.0364 0.1019

• Time-series reconstruction from the best-performing iQTransformer model for the Lorenz
(short-term forecasting) and ITER (long-term forecasting) datasets:

Results

• QML Adaptations:
· Several VQC architectures were extended to multivariate forecasting, enabling modeling of
inter-variable dependencies previously unexplored in QML.

• Quantum Transformer:
· The iQTransformer integrates quantum self-attention into the iTransformer backbone, capturing
cross-variable correlations with fewer parameters and faster convergence.

• Benchmarking and Results:
· Benchmarks on Lorenz and ITER datasets show that hybrid quantum–classical models can
match or surpass state-of-the-art classical and quantum baselines, achieving an effective
balance between accuracy and scalability.

Conclusions
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