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Introduction and Motivation Results

e QML combines quantum computing with classical learning to enhance pattern extraction and e Validation metrics (MAPE, MAE, RMSE) are reported for all implemented models, averaged
data-driven prediction, showing promise in classification, reinforcement learning, and generative over 10 random initializations. Additionally, state-of-the-art classical (1D CNN) and quantum
modelling. (QGRU) baselines are included for comparison.
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e While early efforts have addressed univariate time-series prediction, there is still no clear Model MAPE MAE RMSE
‘ _ : . : . _ : L Llorenz  ITER | Lorenz ITER | Lorenz ITER

state-of-the-art methodology for tackling multivariate time-series forecasting within the

Short-Term Forecasting

VQC (indep.) | 0.0353 0.1490] 0.0173 0.0905 | 0.0281 0.1341

quantum paradigm.

e Classical deep learning models, especially Transformer architectures, achieve strong results VQC + MLP 0305 01037 0.139 0.0522| 0.184 0.0963
through attention mechanisms that capture inter-variable dependencies, though at high DE. (obs.) 0.117 nfa | 0.0558 n/a | 0.0982 n/a
computational cost. DE. (qubits) 0.116 n/a 0.0563 n/a 0.0985 n/a

Enc-VQC-Dec. | 0454 03800, 0.210 0.3435| 0.259 0.3574

e This work extends QML to the multivariate regime, exploring several quantum and hybrid Data re-upload.| 0.0388 0.0518  0.0192 0.0353 0.0308 0.0534

architectures and introducing a novel quantum Transformer model for multivariate forecasting. OGRU 0432 01852 0195 01205 0243 01577
1D CNN 0204 0.0798 0.082 0.0434 0.101 0.0741

e We compare their performance against leading classical and hybrid baselines on both synthetic
and real-world datasets.

tTransformer 0.00807 0.0154 0.00394 0.0069 |0.00636 0.0354
1Q Transformer | 0.00857 0.0152| 0.00414 0.0071 0.00668 0.0351
Long-Term Forecasting

VQC + MLP 0.235 nfa | 0.09/76 n/a 0.127 n/a

OML for Multivariate Time-Serties Fnc—VQC-Dec. | 0283 00947 0114 00477 0141 0.1076
1D CNN 0.235 0.1191 | 0.0954 0.0515| 0.122 0.1241
Models were implemented using the PennyLane quantum ML framework. LTranstormer 0.0498 0.0874| 0.0234 0.0552] 0.0371 0.1050

1Q Transformer | 0.0490 0.0849| 0.0230 0.0340| 0.0364 0.1019

e Time-series reconstruction from the best-performing iQTransformer model for the Lorenz
(short-term forecasting) and ITER (long-term forecasting) datasets:

1. Baseline VQC with independent channels:

e Each input channel is encoded into its own quantum circuit with as many qubits as time steps,
using single-parameter RY rotations.
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e No cross-variable correlations are modeled. / —— Target
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2. Hybrid VQC + Post-Quantum MLP:
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e Same independent-channel design, followed by a shallow MLP to capture inter-channel 0 50 100 150 200
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correlations from circuit outputs. /\—_\N
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3. Dense embedding VQC:
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e All channels jointly encoded in one circuit via RZ-RX-RY rotations (qml.Rot), up to three 0 50 100 150 200
channels per qubit. Lo
e Two variants: ® n.::\—/\_/\/\
- Multi-observable single-qubit: measure Pauli X, Y, Z on one qubit per channel. o
- Single-observable multi-qubit: measure Pauli Z on three qubits. - ! 0 o 10 200
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4. Hybrid Encoder—-VQC-Decoder: =
S0
e A classical encoder maps inputs to a lower dimension, processed by one quantum circuit; a .
classical decoder restores the output size. S0 50 100 150 200

T1ime step

5. Sequential Data Re-uploading:
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e Each time step is sequentially encoded in the same circuit, alternating encoding and variational 8 'f ‘\1 ﬂ \‘ . N
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e Variables are embedded as tokens (iTransformer paradigm); attention operates across variables, = —— Prediction 6h |
while feed-forward networks act along time per token. 0.0 - " " " - > -
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[ } L ) e QML Adaptations:
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—> . C Y - Several VQC architectures were extended to multivariate forecasting, enabling modeling of

inter-variable dependencies previously unexplored in QML.
e The classical self-attention is replaced by a Quantum Self-Attention Layer (QSAL) based on

VQCs (QSANN): queries, keys, and values are produced by separate variational circuits.  Quantum Transformer:

- The iQTransformer integrates quantum self-attention into the iTransformer backbone, capturing

Attention coefficients arise from Gaussian projections of query/key measurements; outputs cross—variable correlations with fewer parameters and faster convergence.

aggregate value measurements across variables via residual connections.

_ . . . . e Benchmarking and Results:
e The QSANN ansatz uses layers of single-qubit rotations with entangling CNOTs, repeated p , ,
. . . ) B ) e - Benchmarks on Lorenz and ITER datasets show that hybrid quantum-classical models can
times; depth and qubit count control expressivity and parameter efficiency.

- < . match or surpass state-of-the-art classical and quantum baselines, achieving an effective
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" KeyVQC balance between accuracy and scalability.
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Experimental Setup

e Synthetic dataset — Lorenz system: a 3-channel chaotic system defined by the Lorenz equations.

e Real dataset — ITER: a 7-channel dataset from a wind turbine in Tenerife, Spain, covering N %
four months of operation in 2024. Variables include total energy demand, renewable generation,
normalized power, wind speed/direction, and curtailment setpoint (target variable). %\é_/@@
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e Two forecasting regimes were considered: short-term (ST) and long-term (LT). /N i Q CI RC LE ARGUIEER ITER
L. : : AM“ a3’ “M[\. CENTER AN
- ST: next prediction point computed from every 5 ground-truth points. \l/
- LT: for Lorenz, the next 5 points are predicted; for ITER, 3.5 days of data are used to forecast Universidad de Oviedo
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