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•Some algorithms will be provided for black-box structures: for astructure M , its elements are represented as strings of n qubits; weassume efficient access to an oracle that implements the operationsin M . This implies that |M| ≤ 2n. We focus on QMAB and BQPB.
Definition 1 (BQPB).A language L ⊂ {0, 1}∗ is in BQPB if there exists
a uniform family of quantum poly-generated circuits {Qn} with poly-
width and efficient access to an oracle B, such that, ∀x ∈ {0, 1}n: if
x ∈ L, Qn accepts x in poly-time with probability ≥ 2/3; if x < L, Qn
accepts x in poly-time with probability < 1/3.
Definition 2 (QMAB).A language L ⊂ {0, 1}∗ is in QMAB if there exists
a uniform family of quantum poly-generated circuits {Qn} with poly-
width and efficient access to an oracle B, such that, ∀x ∈ {0, 1}n:
if x ∈ L, there exists |ψ〉 ∈ (C2)⊗q(n) so that Qn accepts (x, |ψ〉) in
poly-time with probability ≥ 2/3; if x < L, then for all |ψ〉 ∈ (C2)⊗q(n),
Qn accepts (x, |ψ〉) in poly-time with probability < 1/3.
• Initial result: for any magma M , the state |M〉 := 1/√|M|∑m∈M |m〉can be created:
1.Prepare the state |+〉n in register R and |0〉 in register S.
2. Check if register R belongs to M, storing the output in register S.
3.Measure the register S.

Introduction and preliminaries

•Finding a generating set of a group G: generate from |G〉 a total of
n2 random elements.
•Finding additive generators for a subring S = 〈s0, . . . , sk〉: let H0 bethe group generated by H̃0 := {s0, . . . , sk} and set l = 0.
1.For all si ∈ H̃0 and hj ∈ H̃l, check, one by one, if sihj ∈ Hl [1].
2. If sihj < Hl, define H̃l+1 = H̃l ∪ {sihj} and start again for l = l+ 1.
3. Continue until sihj ∈ Hl, ∀i, j .
•Hence, any result applicable to abelian subgroups is also applicableto subrings, such as creating the state |S〉 for any subring S [1].
•Combining the previous three results, we can deduce:
→Membership to a subring: given an element r ∈ R , we can efficientlydetermine if r ∈ S [1].
→Equality of subrings: construct |S〉, |T 〉 and perform a swap test.
→Elimination of redundant generators.
→Generators for the intersection of two subrings: the function f (s) =
|s+T 〉 hides the subgroup (S∩T )+ inside S+. The hidden subgroupproblem can be solved for abelian groups [2].

•Left-ideality of a subring I:1.Prepare |R〉, |I〉 and |0〉 in registers R, I and M, respectively.2.Multiply |R〉 and |I〉 on register M and measure M.3.Declare that I is an ideal only if the result belongs to I .
• ‘Non-division ring’ in QMAB: let S be the certificate register.1.Measure S and reject if the result is not in R or is equal to 0.2. In S, we are left with an r ∈ R . Accept if and only if rR , R .

Ring problems in QMAB or BQPB

•Given f : Mr −→ {0, 1}n, we want to decide if there exists an elementin a fixed A ⊆ {0, 1}n such that A ∩ f (Mr) , ∅.
•This includes the problems of deciding if an element is invertible, ifits annihilator is different from 0, the existence of divisors of 0 oridempotent elements, if an element behaves like a 0 for the product,or if M is commutative, associative, distributive, etc.
•Approach based on Quantum Abstract Detecting Systems [3]:
|M〉⊗r Of

...
Of|0〉⊗n ⊕a1 ⊕a1 ... ⊕an ⊕an

|1〉 Z ... Z

•Exact if A ∩ f (Mr) , ∅ or if |{~x ∈ Mr such that f (~x) ∈ A}| = |f (Mr)|/2.Overall behavior equivalent to the classical random pooling method:if we repeat it R times, the probability of error is 12R+1.
•However, if we repeat our quantum method R−1 times and then applythe classical method just once, the probability of error is R(2R−1)(2R+1).

Magmas: existence problems

•We are given f : {0, 1}n −→ {0, 1}m and two disjoint subsets of
{0, 1}m, A = {a1, a2, . . . , adA} and B = {b1, b2, . . . , bdB}. We assumethat f ({0, 1}n) is either contained in one of both sets, or balancedbetween both, and must decide which is the case.

|0〉⊗n H
Of

H
|ψA〉, or |ψB〉

•For A = {a1}, B = {b1, b2}, |ψA〉 and |ψB〉 are, respectively:1√21+2(|0〉−|a1〉+|b1〉+|b2〉−|a1⊕b1〉−|a1⊕b2〉+|b1⊕b2〉−|a1⊕b1⊕b2〉);
1√21+2(|0〉+|a1〉−|b1〉−|b2〉−|a1⊕b1〉−|a1⊕b2〉+|b1⊕b2〉+|a1⊕b1⊕b2〉)

Definition 3.We say A and B are ⊕-incoherent if an equation of the
form

⊕k
p=1aip = ⊕l

q=1 bjq holds, being both k and l odd.
Theorem 1.The ⊕-coherence of A and B can be deterministically
decided in O(m(dA + dB)2) operations. At least one of |ψA〉 or |ψB〉,
is deterministically constructible ⇔ A and B are ⊕-coherent.

Deutsch-Jozsa generalization

•Every quantum procedure that works for abelian subgroups, worksfor any subring as well.
•Connection between magmas and the QADS paradigm.
•New generalization of the Deutsch-Jozsa algorithm, where the func-tion is either balanced between two sets or constant on one.
•Other approaches to the construction of |ψA〉 or |ψB〉 might gain effi-ciency. Starting an algorithm with a random distribution of amplitudesigns in |M〉 could mitigate the arbitrariness of a magma operation.

Conclusions and future works
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