Some quantum algorithms for black-box algebraic structures
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Introduction and prelimine

Magmas: existence probl

e Some algorithms will be provided for black-box structures: for a
structure M, its elements are represented as strings of n qubits; we

assume efficient access to an oracle that implements the operations
in M. This implies that |[M| < 2". We focus on QMAP and BOP".

Definition 1 (BQPP). A language L C {0,1}* is in BOQPP" if there exists
a uniform family of quantum poly-generated circuits {Q,} with poly-
width and efficient access to an oracle B, such that, Vx € {0,1}": if
x € L, Q, accepts x in poly-time with probability > 2/3; if x ¢ L, O,
accepts x in poly-time with probability < 1/3.

Definition 2 (QMAP). A language L C {0,1}* is in QMA?P if there exists
a uniform family of quantum poly-generated circuits {Q,} with poly-
width and efficient access to an oracle B, such that, Vx € {0,1}":
if x € L, there exists [()) € (C?)®9" so that Q, accepts (x,|()) in
poly-time with probability > 2/3; if x ¢ L, then for all |) € (C?)®9"),
Q,, accepts (x, |W)) in poly-time with probability < 1/3.

e Initial result: for any magma M, the state |M) :=1/~/|M|)_..rIm)
can be created:

1. Prepare the state |+)" in register R and |0) in register S.
2. Check if register R belongs to M, storing the output in register S.

3.Measure the register S.

Ring problems in QMADB

e Finding a generating set of a group G: generate from |G) a total of

n? random elements.

e Finding additive generators for a subring S = (s, .
the group generated by Hp := {sy, .

.., Sk): let Hy be
.., Sk} and set [ = 0.

1.For all s; € Hy and h; e H, check, one by one, if sih; € H; [1]

2.1f sih; ¢ H,, define H.1=H U {sih;} and start again for | = [+ 1.
3. Continue until s;h; € H,, Vi, j.

e Hence, any result applicable to abelian subgroups is also applicable
to subrings, such as creating the state |S) for any subring S [1]
e Combining the previous three results, we can deduce:

— Membership to a subring: given an element r € R, we can efficiently
determine if r € S [1].

— Equality of subrings: construct |S),

I') and perform a swap test.

— Elimination of redundant generators.

— (Generators for the intersection of two subrings: the function 7(s) =
s+ T) hides the subgroup (SN T)" inside S™. The hidden subgroup
yroblem can be solved for abelian groups |2].

o | eft-ideality of a subring /:
1. Prepare |R),

2.Multiply |R) and |/} on register M and measure M.

[y and |0) in registers R, | and M, respectively.

3.Declare that I is an ideal only if the result belongs to /.

e ‘Non-division ring’ in QMAB: let S be the certificate register.

1.Measure S and reject if the result is not in R or is equal to O.

2.In'S, we are left with an r € R. Accept it and only if rR # R.

e Given f : M" — {0, 1}", we want to decide if there exists an element
in a fixed A C {0,1}" such that An f(M") # 0.

e [his includes the problems of deciding if an element is invertible, if
its annihilator is different from 0, the existence of divisors of 0 or
ldempotent elements, if an element behaves like a 0 for the product,
or it M is commutative, associative, distributive, etc.

e Approach based on Quantum Abstract Detecting Systems [3]:
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eExact t ANF(M") # @ or if [{X € M" such that f(X) € A}| = |f(M")]/2.
Overall behavior equivalent to the classical random pooling method:

it we repeat it R times, the probability of error is 2R1+1.

e However, it we repeat our quantum method R—1 times and then apply

: : ) - . R
the classical method just once, the probability of error is PRTCRT)

Deutsch-Jozsa generaliza

eWe are given f : {0,1}" — {0,1}" and two disjoint subsets of
{0,1}™, A ={ay,0z,...,0q4,} and B = {bq,by,...,by,}. We assume
that f({0,1}") is either contained in one of both sets, or balanced
between both, and must decide which is the case.
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Definition 3. We say A and B are @&-incoherent if an equation of the

form @;;:1 a;, = @Iqﬂ b;. holds, being both k and | odd.

Wa) and |[Yp) are, respectively:

(‘O)—‘CM>-|-‘/31>-|—‘/32>—‘CI1€B/31 >—|CI1@bz)—l—‘/ﬂ69/32)—‘0169/31@/32));

(‘O>—|—‘CI1>—‘b1>—‘b2>—‘€l1€9b1 >—|CI1@b2>+‘b1@b2>+‘CI1€Bb1€Bb2>)

Theorem 1. The &-coherence of A and B can be deterministically
decided in O(m(d4 + dg)?) operations. At least one of |4) or |Y3B),
is deterministically constructible < A and B are &-coherent

Conclusions and future wc

e Every quantum procedure that works for abelian subgroups, works
for any subring as well.

e Connection between magmas and the QADS paradigm.

e New generalization of the Deutsch-Jozsa algorithm, where the func-
tion is either balanced between two sets or constant on one.

e Other approaches to the construction of [(4) or

i) might gain effi-
ciency. Starting an algorithm with a random distribution of amplitude
signs in |M) could mitigate the arbitrariness of a magma operation.
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