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Monte Carlo and Importance Sampling

Standard Monte Carlo: By drawing N i.i.d. random samples {x;}% 1 , the integral is estimated by:
AMC) _ Q| < A(MC) o |Q| 2 2
= | fx)ax, Ie —TZﬂ x) = |Q|(f) . = Zf( )2 = (f)
Q :

Importance Sampling: Variance reduction Technique. Using a g(x) as the proposal Probability Density Function (PDF)

that is computationally efficient to sample from and resembles f(x).

N

N 2
the integral is reformulated as: I = J f(—)q(x)dx , 145 — 1 Z J&) , <5(IS)>2 — I I Z J&x)” (f(IS))2 .
a 4(X) NN gx) N N—1\N“~gx)> "
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VEGAS

Adaptive Importance Sampling;:

O VEGAS is an Adaptive Importance Sampling Algorithm G. P Lepage, J. Comput. Phys. 27 (1978) 192.
G. P Lepage, J. Comput. Phys. 439 (2021) 110386, [2009.05112)].

O Generates N uniform samples in y € [0,1]1¢ (y is discretised) .

dx

O Maps to the original space: y — X(y) , through the Jacobian transformation: J(y) = |
y

1-D grid: xy = a, x; = X;_; + Ax;_y, Xy = b, x(y) = X+ Ax(N,y — i), i = [Ny, J(y) =N, Ax;.

Interval: [a.b]

N, : Number of Grid cells per dimension/Constant everywhere

O The integral becomes: I = I J(y) f(x(y)) dy
[0,1]4

o " I S
Integral Estimator: I](\YEGAS) = N Z J(y)f (X(Yi))
i=1

1 (1 . 2
Variance Estimator: (8](\>’EGAS))2 =N (N Z Ty ) fA(x(yy)) — (IJ(\YEGAS) ) )
k=1
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VEGAS

Projections:

O Entries for Jacobian for generic multidimensional transtormations : Ng — Computationally prohibitive

d
O Axis projections: Perform the transformation on each dimension independently: J(y) — HJl-(yl-)

=1

O Total Degrees of Freedom: d* N,

d
©  Separable pdf: gypGAg®X) = H Z 700 [®(xi — X;) — O(x; — xi,k+1)] = H%(Xi)
i=1 k=0 ! —

O Efficiently finds important structures but creates phantom structures |,

that lead to oversampling of irrelevant parts of the integration domain.



Quantum Monte Carlo

Typical Quantum Computational Approach:
Importance Sampling:

N 2
( 8(IS)>2 _ 1 1 2 J(xy) ( j‘(IS))z
N N—-1\N< qx)* N
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QAE for quadratic advantage in RMSE.

A. Montanaro, Proc. R. Soc. A 471, 20150301 (2015).

C. Zoufal et al, npj Quantum Information 5 (Nov, 2019) 1083.

G. Agliardi et al, Phys. Lett. B 832 (2022) 137228, [2201.01547]. By the number of samples, falls as: 6 ~ O(N™
K. Plekhanov et al Quantum 6 (Mar., 2022) 670.

S. Herbert ,Quantum 6 (Sept., 2022) 823
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Our approach:

Parenthesis Factor: Gets smaller as g(x) — f(x) — Precision critically relies on the proposal PDF

Starting Point: In HEP , that standard is the VE(GAS algorithm
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Conceptual basis:

O Quantum Adaptive Importance Sampling (QAIS):

Exploit the exponentially large Hilbert space of a parameterised quantum circuit (PQC)

and entanglement between registers to load and sample from a non-separable proposal PDF.

O Why Importance Sampling (IS) with Quantum Computing?
e IS targets small, high-impact regions.
e Direct measurement is efficient when the answer lies in a small corner of the full Hilbert space.

e We do not require a perfect function loading.

O Objective:

1. Reach target accuracy with fewer samples (function evaluations).

2. For a certain samples budget, reach better accuracy.



Encoding:

Quantum Adaptive Importance Sampling

O(n?) Gates

f(x,y,z)

d
Domain Q = H la, b;]. Per dimension i: g, qubits — 2% grid cells .
i=1

Generati b —a
CHOPE 57 @rid Cells . Cell Width per dimension i : Q, = ——

d
Total qubits : n = Z q;
i=1




Quantum Adaptive Importance Sampling

Encoding:

O(n?) Gates

z f<X7Y7Z> ‘O> : U<9q ) misan
Do U<0Q9:7Q>

0} HF Ubs.) 1+r

0) [ E 06 LIk

N U(qu@y) U(qu,qu qu,qzv qu.,qz)

| - | 0) T} : Ul,,) -

. 0) {H} E U(0y.) | +#F
Y Do U(QQZH)

_\O> : Ul0y.) —+r

Separable PDF Analogue

d
O  Domain Q = H [a;, b;]. Per dimension i : g; qubits — 29 grid cells .
i=1
d Generating ;=
Total qubits : n = Z q: > 2" Grid Cells . Cell Width per dimension i : Q; = —.
i=1

O  1-1 map between grid cells and basis states:

d
State with index (Big Endian Encoding) |j>=|j, > ...|j; > = (j;, ...,j,;) maps to the cell: Q) = H [a; + ], a; + (j; + 1)Q]
i=1



Quantum Adaptive Importance Sampling

Encoding:

O(n?) Gates

z f(x,y,z) E\.OI;."""""""""% Ircompim
’~ dx { Lo U(by,.q.) : : S
N S 7 :0) {71 U0,) A
\\ < ,’ {50> E Ul6n,) |14

97 11 Qy Do Uwq;mqy) U(qu,qu qu,qzv qu.,qz)
= Wl =0 | D
; x \‘\ \/ / /” v £[0) {H} b U(6,.) -k

\ N / 4z o U(0y..q.)

AN 770N { (Rl 006.) HrAt

Separable PDF Analogue

d
O  Domain Q = H [a;, b;]. Per dimension i : g; qubits — 29 grid cells .
i=1
d Generating ;=
Total qubits : n = Z q: > 2" Grid Cells . Cell Width per dimension i : Q; = —.
i=1

O  1-1 map between grid cells and basis states:

d
State with index (Big Endian Encoding) |j>=|j, > ...|j; > = (j;, ...,j,;) maps to the cell: Q) = H [a; + ], a; + (j; + 1)Q]
i=1

d
1
O  Proposal PDF: q(Xx) = Z [ CGirnnid |2H5 [@ (xl- — (a; + inl-)) — @(xi —(a;+ (J; + I)Ql-))] (Generally Non-Separable)
J Ja =1 "



Quantum Adaptive

State Preparation:

O(n?) Gates

U(HQx,Qy ) HQJHQZ ) Hanqz>

Importance Sampling

A

1<J U {eqk}ke{m,y,z}
i,je{m’y,z}

~”

0(("2’) +n) & O(n?)

O Quantum Generative Modelling for State
preparation.
O SV Quantum Simulation

O Cost Function: Discretized KL-Divergence
O Optimiser: COBYLA



Quantum Adaptive Importance Sampling

State Preparation:

O(n?) Gates

O Quantum Generative Modelling for State

preparation.
O SV Quantum Simulation

i<i U l0aketey ) O Cost Function: Discretized KL-Divergence
(’)((Z)+;)z(’)(n2) / o Optimiser: COBYLA

U(HQx,Qy ) HQJHQZ ) Hanqz>

- ; — A

5-Qubit Example

{zzHzzHzzHzz Us
7z zzHzzHzz Us -
O PQC: all-to-all connectivity 2-qubit gates (QAOA-inspired): —zz1Hzz 2z 2z Us |-
O Number of gates and parameters: O(n?): AN 77 77 Us -
{zzHzz Z7 77 Us -




Quantum Adaptive Importance Sampling

Integral Estimation:

'—U
H
o
O—l
)
S.
t
<

Target Integral
f(z,y,2)

Samples
(.flfl, Y1, Zl)a

(CUN, YN, ZN>

Weights

Quantum
Importance
Sampling

Integral
Estimate

I

Variance

0.2

O Direct Sampling:
N measurements.

N; counts per state |j > or cell QU

Empirical probabilities p; = N,/N
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Quantum Adaptive Importance Sampling

Integral Estimation:

Target Integral O Direct Sampling:

flz,y,2) N measurements.

Integral
Samples Q uantum Estimate

<x1 A Importance I Empirical probabilities p; = N,/N
(xNv YN ZN) Sampling

N; counts per state |j > or cell QU

'—U
H
o
O—l
)
S.
t
<

Variance o Empirical allocation:

o’ N; points {ng)}i.\zl drawn uniformly per cell .

Weights

O Framework fully compatible with quasi-random

sequences.

O Naive Integral estimator and variance:

N |

JQAIS) —iZw@f(x(j)) wor = S22 000, it grid cell = j-th quantum stat

= Ly, = . . j-th grid cell = j-th quantum state
i=1

Dj .
! x\: i-th random point at grid cell

< 8(QAIS)>2 _ 1 [w( DA j))] - ( i(QAIS))Z N: Number of shots
Al N-1\N& l N N;: Number of times state j was measured




Quantum Adaptive Importance Sampling

Two-Dimensional Gaussian Case:

Grid of VEGAS

o

i
=Y

y Phantom Peak

T T
- -] =) =]

X Phantom Peak

r, = (0.23,0.23), r, = (0.74,0.74)

Integrand

Number of Qubits: n = 10
Number of Shots: N = 10*
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Two-Dimensional Gaussian Case:

Grid of VEGAS

r, = (0.23,0.23), r, = (0.74,0.74)

Integrand

Phantom Peak
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‘N.. il S
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VEGAS in the QAIS Grid

N
o
o
N
o
(@)

[EEN
(@)
o

Number of Samples
—
o
o

Number of Samples

O Given M observed states out of 2"

These correspond to a region 2~ C €2

Using the j-th cell estimator: /;

O We observe a systematic bias:

Bias = — Z I]

JEQ\Q™

. N.
.| QW] 2 .
— f(XfJ)>
N i=1

J

10
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Systematic Bias Solution: Tiling Algorithm

1. Challenge: Unmeasured states — Integral underestimation (Bias)
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Systematic Bias Solution: Tiling Algorithm

1. Challenge: Unmeasured states — Integral underestimation (Bias)

Efficient Quantum Measurement: . .
Practical Demonstration

— > Target at few states
2. Conflicting objectives:
. Unbiasedness:
Evaluate every grid cell ___ Important Regions
. . Greedy 3
3. Solution: Tiling Algorithm to reconstruct PDF Expansions 200%
over the full integration domain: @(nM logM+ Md>n? ) 5’3
Sorting 1°°§
I) Detailed sampling in

Important Regions

N
o
(@)

I1)

Non-Important Regions

—_
(@)
(@)

Number of Samples

IT) Sparse uniform sampling in the

[\
o
o

Non-Important Region

Contains Formerly
Missing Contribution

—_
o
(@]

Number of Samples

QAIS estimator:




Quantum Adaptive Importance Sampling

More Two-Dimensional Examples:

O Sampling efficiency of QAIS compared to VEGAS depends heavily on the target integrand’s structure.
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Quantum Adaptive Importance Sampling

More Two-Dimensional Examples:

Number of Qubits: n =10

O Sampling efficiency of QAIS compared to VEGAS depends heavily on the target integrand’s structure.
Number of Shots: N = 10*

Ring-Shaped Structure: Integrand VEGAS in the QAIS grid

S
(@)
S
(@)

k(=) + (=) =p)’

w
(@)
W
(@)

fR(xay) = €

o
o
Function Value

o
N
N
(@)
Number of Samples

N
o
Number of Samples

—
(=)
p—
(@)

. 1 1
With: =3 ¢=3  p=035 k=200

Atom-Shaped Structure: Integrand

S
(@)
S
o

— () ()H2 5D

—
1

—
(e}
Function Value

fax,y) =c,e

Y [CO + ¢y ey O= 1 s3>]
0c{0,x/4,—n/4}

W
o
(O]
o

N
o
Number of Samples

N
(@]
Number of Samples

—
(@)
—
(@)

With: u(x) =x—=, vy =y—-.

r(5,3.0) =/ (Ue.y.0)/a)’ + (V(x.y.0)/b)’

Ux,y,0) = cos@u(x)+ sindv(y), V(x,y,0) = —sin @ u(x) + cos 8 v(y), a= % b=0.15  5=01, 5,=004  ¢,=20, =005 ¢;=105 i



Quantum Adaptive Importance Sampling

HEP example: One-loop Pentagon

One-Loop Pentagon Diagram :
(Loop-Tree Duality)

g3 = € + p123

13



Quantum Adaptive Importance Sampling

HEP example: One-loop Pentagon

One-Loop Pentagon Diagram :
(Loop-Tree Duality)

One-loop Pentagon Feynman Integral

106 5
—e— QAIS | (8,4,4) qubits | D = 0.09 ]

QAIS | (8,5,5) qubits | Dk, =0.09
—e— QAIS | (9,5,5) qubits | Dk, =0.14
- - VEGAS

Uncertainty (%)
S

—eo— QAIS | (8,4,4) qubits | D, =0.09
| | QAIS | (8,5,5) qubits | Dk, = 0.09

9y , i —e— QAIS | (9,5,5) qubits | Dk, =0.14
q3 — [ + 1)123 ] Q | ( ) q | Dke

n
)
i
©
=
n
o)
)
o
S
n
©
=
Gy
o
o
)
O
&
S
Z

—
o
w

10° 106 107
Number of Shots Number of Shots

O Uncertainty: o/l
O Dicretization: 16-19 qubits
O Comparison made on best VEGAS proposal against best QAIS proposal

O Error bands coming form 100 independent integrations, with the same proposal PDF 13



Quantum Adaptive Importance Sampling

Cross-Dimensional Results:

O Integrate the same multi-peak structure in different dimension.

O Analytic Expression:

. 2
fx)dx = 2 e 201l ) gx
Ny [O,l]d

1=0

J [0,1]0'

ro = (0.23,...,0.23), r;=(0.39,...,0.39), r,=(0.74,...,0.74)



Quantum Adaptive Importance Sampling

Cross-Dimensional Results:

O Integrate the same multi-peak structure in different dimension.

O Analytic Expression:

f(x)dx = D el ) ax

[0,11¢ \ =0

(J

[0,1]¢

¢

ro = (0.23,...,0.23), r;=(0.39,...,0.39), r,=(0.74,...,0.74)

Integrand Dimension: 2-4 dimensions
Discretisation: 5 qubits/dimension
Approx. : 100 COBYLA iters / parameter

Cross-Dimensional Integration Comparison

-o— QAIS 2D | Ngubits = 10 | Dy, =0.09
# VEGAS 2D

QAIS 3D | Ngubits = 15 | D =0.13
VEGAS 3D

-o— QAIS 4D | Ngubits = 20 | Dy, =0.21
#- VEGAS 4D

=
P
i)
(-
o=
©
+—
C
)
o
(-
—

10° 10°
Number of Shots

14
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Cross-Dimensional Results:

O Integrate the same multi-peak structure in different dimension.

O Analytic Expression:

f(x)dx = D el ) ax

[0,11¢ \ =0

(J
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¢

ro = (0.23,...,0.23), r;=(0.39,...,0.39), r,=(0.74,...,0.74)

Integrand Dimension: 2-4 dimensions
Discretisation: 5 qubits/dimension
Approx. : 100 COBYLA iters / parameter

Cross-Dimensional Integration Comparison

-o— QAIS 2D | Ngubits = 10 | Dy, =0.09
# VEGAS 2D

QAIS 3D | Ngubits = 15 | D =0.13
VEGAS 3D

-o— QAIS 4D | Ngubits = 20 | Dy, =0.21
#- VEGAS 4D

=
P
i)
(-
o=
©
+—
C
)
o
(-
—

10° 10°
Number of Shots

O We expect the precision to be governed by how well the proposal fits the target

O The main driving force should be the KL divergence

O We see that as the dimension rises , VEGAS’ best grid falls behind , while QAIS is able to keep uncertainty low,

particularly in the region above

14



Summary
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O VEGAS: Uses a separable proposal gy paAg = qu- . Reduces the grid handling DoF Ng — dN, .
i=1

Captures the important regions, but generates phantom structures, reducing performance.
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Summary

d

O VEGAS: Uses a separable proposal gypaaAg = Hqi . Reduces the grid handling DoF Ng — dN, .
i=1

Captures the important regions, but generates phantom structures, reducing performance.

O QAIS: Uses the exponential Hilbert space of a PQC and entanglement to handle the PDF over the grid and

captures cross-dimensional correlations.

O Debiasing: Tiling removes systematic bias caused by unseen cells.

O Results:

In a comparison between best proposals:

1. Single peak function: Competitive with VEGAS.
2. Multi-modal structure: QAIS is able to maintain small uncertainties regardless of integral’s

dimensionality

O Limitations and Future work: Limitations on arbitrary quantum state preparation. Particularly considering

ongoing limitations in Quantum Machine Learning. Plan to formalise the optimisation process.
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Quantum Adaptive Importance Sampling

Two-Dimensional Gaussian Case: Bias check
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Quantum Adaptive Importance Sampling

Impact of Quasi-Random Sequences

Pseudo-Random (Marsenne Twister) Quasi-Random (Sobol Sequence)

Histograms of Integral Values | Pentagon Feynman Diagram | (9,5,5) qubits Histograms of Integral Values | Pentagon Feynman Diagram | (9,5,5) qubits
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