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Theoretical Predictions in HEP

Precision Era in Particle Physics: LHC and future colliders, require uncertainties in theoretical predictions that 
match the ever growing experimental precision. 
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Theoretical Predictions in HEP

Phase space integrals Multi-loop Feynman diagrams 
Integrals over loop momenta

Precision Era in Particle Physics: LHC and future colliders, require uncertainties in theoretical predictions that 
match the ever growing experimental precision. 

Theoretical predictions for high-energy colliders require going deep in QFT’s perturbation theory.  

Computational Bottleneck: Prediction beyond LO requires numerical integration of multi-dimensional integrals 
with complicated structures.
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Monte Carlo and Importance Sampling

Standard Monte Carlo: By drawing  i.i.d. random samples  , the integral is estimated by:N {xi}N
i=1

I = ∫Ω
f(x)dx , ̂I(MC)
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f(xi) = |Ω |⟨ f ⟩ , ( ̂σ(MC)
N )

2
=

|Ω |2

N − 1 ( 1
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f(xi)2 − ⟨ f ⟩2) .
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Importance Sampling:

the integral is reformulated as:

Variance reduction Technique. Using a  as the proposal Probability Density Function (PDF) 
 that is computationally efficient to sample from and resembles .
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VEGAS
Adaptive Importance Sampling:

VEGAS is an Adaptive Importance Sampling Algorithm  

Generates N uniform samples in  (  is discretised) .  

Maps to the original space:   , through the   transformation:  . 

1-D grid:   

 

The integral becomes:  

Integral Estimation:  

Variance Estimation: 

y ∈ [0,1]d y

y ↦ x(y) J(y) =
dx
dy

x0 = a, xi = xi−1 + Δxi−1, xNg
= b

Interval:[a,b]

, x(y) = xi + Δxi(Ngy − i), i = ⌊Ngy⌋, J(y) = Ng Δxi .

Ng : Number of Grid cells per dimension/Constant everywhere

I = ∫[0,1]d

J(y) f(x(y)) dy

̂I(VEGAS)
N =

1
N

N

∑
i=1

J(yi) f(x(yi))

( ̂σ(VEGAS)
N )2 =

1
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N

N

∑
k=1

J2(yk) f 2(x(yk)) − ( ̂I(VEGAS)
N )
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VEGAS
Projections:

Entries for Jacobian for generic multidimensional transformations :  Computationally prohibitive 

Axis projections: Perform the transformation on each dimension independently:  

Total Degrees of Freedom:   

Separable pdf:  

Efficiently finds important structures but creates phantom structures ,  

that lead to oversampling of irrelevant parts of the integration domain.

Nd
g →

J(y) →
d

∏
i=1

Ji(yi)

d * Ng

qVEGAS(x) =
d

∏
i=1

Ng−1

∑
k=0

1
Ji(yi) [Θ(xi − xi,k) − Θ(xi − xi,k+1)] =

d

∏
i=1

qi(xi)
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Quantum Monte Carlo
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Importance Sampling:

By the number of samples, falls as: σ ∼ 𝒪(N−1/2)

( ̂σ(IS)
N )

2
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f(xi)2
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N )2) .
QAE for quadratic advantage in RMSE.

Typical Quantum Computational Approach: 



Quantum Monte Carlo

In HEP , that standard is the VEGAS algorithm

Parenthesis Factor: Gets smaller as   Precision critically relies on the proposal PDFq(x) → f(x) ⟶

Our approach:
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Quantum Adaptive Importance Sampling
Conceptual basis:

Quantum Adaptive Importance Sampling (QAIS): 
Exploit the exponentially large Hilbert space of a parameterised quantum circuit (PQC) 
and entanglement between registers to load and sample from a non-separable proposal PDF. 

Why Importance Sampling (IS) with Quantum Computing? 
IS targets small, high-impact regions.  
Direct measurement is efficient when the answer lies in a small corner of the full Hilbert space.  
We do not require a perfect function loading. 

Objective: 
Reach target accuracy with fewer samples (function evaluations). 
or 
For a certain samples budget, reach better accuracy.
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Conceptual basis:

Quantum Adaptive Importance Sampling (QAIS): 
Exploit the exponentially large Hilbert space of a parameterised quantum circuit (PQC) 
and entanglement between registers to load and sample from a non-separable proposal PDF. 

Why Importance Sampling (IS) with Quantum Computing? 
•IS targets small, high-impact regions.  
•Direct measurement is efficient when the answer lies in a small corner of the full Hilbert space.  
•We do not require a perfect function loading. 

Objective: 
1. Reach target accuracy with fewer samples (function evaluations). 

or 
2. For a certain samples budget, reach better accuracy.
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Quantum Adaptive Importance Sampling
Encoding:

Separable PDF Analogue

|0→ H

U(ωqx,qx)

U(ωqx,qy, ωqx,qz , ωqy,qz)

U(ωqx)

...
...

...
...

...
...

|0→ H U(ωqx)

|0→ H

U(ωqy,qy)

U(ωqy)

...
...

...
...

...
...

|0→ H U(ωqy)

|0→ H

U(ωqz,qz)

U(ωqz)

...
...

...
...

...
...

|0→ H U(ωqz)

Domain .  Per dimension  .  

Total qubits :  . Cell Width per dimension .  

1-1 map between grid cells and basis states:  

State with index (Big Endian Encoding)   maps to the cell:  

Proposal PDF:         (Generally Non-Separable)

Ω =
d

∏
i=1

[ai, bi] i : qi qubits → 2qi grid cells

n =
d

∑
i=1

qi
Generating

2n Grid Cells i : Ωi =
bi − ai

2qi

| j > = | j1 > … | jd > = ( j1, …, jd) Ω( j) =
d

∏
i=1

[ai + jiΩi, ai + ( ji + 1)Ωi]

q(x) = ∑
j1,…, jd

|c( j1,…, jd) |
2

d

∏
i=1

1
Ωi

[Θ(xi − (ai + jiΩi)) − Θ(xi − (ai + ( ji + 1)Ωi))]
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Quantum Adaptive Importance Sampling
State Preparation:

Separable PDF Analogue

|0→ H

U(ωqx,qx)

U(ωqx,qy, ωqx,qz , ωqy,qz)

U(ωqx)

...
...

...
...

...
...

|0→ H U(ωqx)

|0→ H

U(ωqy,qy)

U(ωqy)

...
...

...
...

...
...

|0→ H U(ωqy)

|0→ H

U(ωqz,qz)

U(ωqz)

...
...

...
...

...
...

|0→ H U(ωqz)

Classical

Parameter

Optimization:

ω = {ωqi,qj} i<j
i,j→{x,y,z}

↑ {ωqk}k→{x,y,z}

︸ ︷︷ ︸

O
((n

2

)
+ n

)
↓ O(n2

)

Quantum Generative Modelling for State 
preparation. 
SV Quantum Simulation  
Cost Function: Discretized KL-Divergence 
Optimiser: COBYLA 
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Quantum Adaptive Importance Sampling
State Preparation:

Separable PDF Analogue
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O
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+ n

)
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)

Quantum Generative Modelling for State 
preparation. 
SV Quantum Simulation  
Cost Function: Discretized KL-Divergence 
Optimiser: COBYLA 

PQC: all-to-all connectivity 2-qubit gates (QAOA-inspired): 
Number of gates and parameters: :𝒪(n2)

5-Qubit Example
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Quantum Adaptive Importance Sampling
Integral Estimation:

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2
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ω2

Direct Sampling:  
 measurements. 
 counts per state or cell  .  

Empirical probabilities  
Empirical allocation: 

  points  drawn uniformly per cell .  
Framework fully compatible with quasi-random 
sequences.

N
Nj | j > Ω( j)

pj = Nj /N

Nj {x( j)
i }Nj

i=1

9



Quantum Adaptive Importance Sampling
Integral Estimation:

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Direct Sampling:  
 measurements. 
 counts per state or cell  .  

Empirical probabilities  
Empirical allocation: 
  points  drawn uniformly per cell .  

Framework fully compatible with quasi-random 
sequences.

N
Nj | j > Ω( j)

pj = Nj /N

Nj {x( j)
i }Nj

i=1

9



Quantum Adaptive Importance Sampling
Integral Estimation:

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Direct Sampling:  
 measurements. 
 counts per state or cell  .  

Empirical probabilities  
Empirical allocation: 
  points  drawn uniformly per cell .  
Framework fully compatible with quasi-random 
sequences.

N
Nj | j > Ω( j)

pj = Nj /N

Nj {x( j)
i }Nj

i=1

9



Quantum Adaptive Importance Sampling
Integral Estimation:

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Quantum
Importance
Sampling

Target Integral

f (x, y, z)

Samples




(x1, y1, z1),
. . . ,
(xN, yN, zN)






Weights
{w1, . . . , wN}

Integral Estimate

I

Variance

ω2

Direct Sampling:  
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Framework fully compatible with quasi-random 
sequences.

N
Nj | j > Ω( j)

pj = Nj /N

Nj {x( j)
i }Nj

i=1

Naive Integral estimator and variance:

̂I(QAIS)
N =

1
N

N

∑
i=1

w( j) f(x( j)
i ), w( j) =

|Ω( j)|
pj

.

( ̂σ(QAIS)
N )

2
=

1
N − 1 ( 1

N

N

∑
i=1

[w( j)f(x( j)
i )]

2
− ( ̂I(QAIS)

N )
2

)

Ω( j) : j-th grid cell ≡ j-th quantum state
x( j)

i : i-th random point at grid cell j
N : Number of shots
Nj : Number of times state j was measured
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Quantum Adaptive Importance Sampling
Two-Dimensional Gaussian Case:

,

∫
[1,1]

[0,0]
f(x)dx = ∫

[1,1]

[0,0] (
1

∑
i=0

e(−200|x−ri|
2)) dx , r0 = (0.23,0.23), r1 = (0.74,0.74)

Number of Qubits: n = 10

Number of Shots: N = 104

10



Quantum Adaptive Importance Sampling
Two-Dimensional Gaussian Case:

Given  observed states out of : 
These correspond to a region  

Using the -th cell estimator:  

We observe a systematic bias: 

M 2n

Ω− ⊂ Ω

j ̂Ij =
|Ω( j) |

Nj

Nj

∑
i=1

f (x( j)
i )

Bias = − ∑
j∈Ω∖Ω−

Ij
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Quantum Adaptive Importance Sampling
Systematic Bias Solution: Tiling Algorithm

1. Challenge: Unmeasured states  Integral underestimation (Bias)→
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Quantum Adaptive Importance Sampling
Systematic Bias Solution: Tiling Algorithm

3. Solution:

1. Challenge: Unmeasured states  Integral underestimation (Bias)→

2. Conflicting objectives:

Efficient Quantum Measurement: 
Target at few states

Unbiasedness: 
Evaluate every grid cell

  Tiling Algorithm to reconstruct PDF 
   over the full integration domain: 𝒪(n M log M

Sorting

+

Greedy
Expansions

M d3 n2 )
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Quantum Adaptive Importance Sampling
Systematic Bias Solution: Tiling Algorithm

I)  Detailed sampling in 
Important Regions 

II) Sparse uniform sampling in the 
Non-Important Region

3. Solution:

1. Challenge: Unmeasured states  Integral underestimation (Bias)→

2. Conflicting objectives:

̂I(QAIS)
N =

1
N ∑

i∈ΩI

w(i)
Ni

∑
j=1

f(x(i)
j ) +

1
N ∑

k∈ΩN−I

w̃(k)
Ñk

∑
j=1

f(x(k)
j )

Efficient Quantum Measurement: 
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Unbiasedness: 
Evaluate every grid cell

  Tiling Algorithm to reconstruct PDF 
   over the full integration domain:

QAIS estimator:
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Quantum Adaptive Importance Sampling
Systematic Bias Solution: Tiling Algorithm

I)  Detailed sampling in 
Important Regions 

II) Sparse uniform sampling in the 
Non-Important Region

3. Solution:

1. Challenge: Unmeasured states  Integral underestimation (Bias)→

2. Conflicting objectives:
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f(x(i)
j ) +

1
N ∑

k∈ΩN−I

w̃(k)
Ñk

∑
j=1

f(x(k)
j )

Efficient Quantum Measurement: 
Target at few states

Unbiasedness: 
Evaluate every grid cell

  Tiling Algorithm to reconstruct PDF 
   over the full integration domain:

QAIS estimator:

Contains Formerly  
Missing Contribution

Practical Demonstration

II)

I)

𝒪(n M log M

Sorting

+

Greedy
Expansions

M d3 n2 )
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Quantum Adaptive Importance Sampling
More Two-Dimensional Examples:

Sampling efficiency of QAIS compared to VEGAS depends heavily on the target integrand’s structure.
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Quantum Adaptive Importance Sampling
More Two-Dimensional Examples:

Sampling efficiency of QAIS compared to VEGAS depends heavily on the target integrand’s structure.

With:

fA(x, y) = cg e−(u(x)2+v(y)2)/(2 s2
g)

+ ∑
θ∈{0,π/4,−π/4}

[c0 + cθ e−(re(x,y,θ)−1)2/(2 s2
r )]

u(x) = x− 1
2 , v(y) = y− 1

2 ,

U(x, y, θ) = cos θ u(x) + sin θ v(y), V(x, y, θ) = − sin θ u(x) + cos θ v(y),

re(x, y, θ) = (U(x, y, θ)/a)2 + (V(x, y, θ)/b)2

a = 1
2 , b = 0.15, sr = 0.1, sg = 0.04, cg = 20, c0 = 0.05, cθ = 10.5

fR(x, y) = e−k ( (x − cx)2 + (y − cy)2 − ρ)2

cx = 1
2 , cy = 1

2 , ρ = 0.35, k = 200With:

Ring-Shaped Structure:

Atom-Shaped Structure:

Number of Qubits: n = 10

Number of Shots: N = 104
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Quantum Adaptive Importance Sampling
HEP example: One-loop Pentagon 

One-Loop Pentagon Diagram :  
(Loop-Tree Duality)
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Quantum Adaptive Importance Sampling
HEP example: One-loop Pentagon 

One-Loop Pentagon Diagram :  
(Loop-Tree Duality)

Uncertainty:  
Dicretization: 16-19 qubits 
Comparison made on best VEGAS proposal against best QAIS proposal 
Error bands coming form 100 independent integrations, with the same proposal  PDF

σ/I

Measured States
Full Hilbert Space

13



Quantum Adaptive Importance Sampling
Cross-Dimensional Results:

Integrate the same multi-peak structure in different dimension.  
Analytic Expression:

∫[0,1]d

f(x)dx = ∫[0,1]d (
2

∑
i=0

e−50|x−ri|) dx

r0 = (0.23,…,0.23), r1 = (0.39,…,0.39), r2 = (0.74,…,0.74)
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Quantum Adaptive Importance Sampling
Cross-Dimensional Results:

We expect the precision to be governed by how well the proposal fits the target  
The main driving force should be the KL divergence  
We see that as the dimension rises , VEGAS’ best grid falls behind , while QAIS is able to keep uncertainty low,  
particularly in the region above 

Integrate the same multi-peak structure in different dimension.  
Analytic Expression:

Integrand Dimension: 2-4 dimensions 
Discretisation: 5 qubits/dimension  
Approx. : 100 COBYLA iters / parameter

∫[0,1]d

f(x)dx = ∫[0,1]d (
2

∑
i=0

e−50|x−ri|) dx

r0 = (0.23,…,0.23), r1 = (0.39,…,0.39), r2 = (0.74,…,0.74)

14



Summary

VEGAS: Uses a separable proposal  . Reduces the grid handling DoF  . 

Captures the important regions, but generates phantom structures, reducing performance. 

QAIS: Uses the exponential Hilbert space of a PQC and entanglement to handle the PDF over the grid and 
captures cross-dimensional correlations. 

Debiasing: Tiling removes systematic bias caused by unseen cells.  

Results:  
In a comparison between best proposals: 

Single peak function: Competitive with VEGAS. 
Multi-modal structure: QAIS is able to maintain small uncertainties regardless of integral’s dimensionality 

Future work: Formalise the optimisation process. Particularly considering ongoing limitations in Quantum 
Machine Learning

qVEGAS =
d

∏
i=1

qi Nd
g → dNg
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Summary
VEGAS: Uses a separable proposal  . Reduces the grid handling DoF  . 

Captures the important regions, but generates phantom structures, reducing performance. 

QAIS: Uses the exponential Hilbert space of a PQC and entanglement to handle the PDF over the grid and 
captures cross-dimensional correlations. 

Debiasing: Tiling removes systematic bias caused by unseen cells.  

Results:  
In a comparison between best proposals: 

1. Single peak function: Competitive with VEGAS. 
2. Multi-modal structure: QAIS is able to maintain small uncertainties regardless of integral’s 

dimensionality 

Limitations and Future work: Limitations on arbitrary quantum state preparation. Particularly considering 
ongoing limitations in Quantum Machine Learning. Plan to formalise the optimisation process.

qVEGAS =
d

∏
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qi Nd
g → dNg

15



Supplementary Material



Quantum Adaptive Importance Sampling
Two-Dimensional Gaussian Case: Bias check 

,

∫
[1,1]

[0,0]
f (x)dx = ∫

[1,1]

[0,0] (
1

∑
i=0

e(−200|x−ri|
2)) dx , r0 = (0.23,0.23), r1 = (0.74,0.74)

Number of Qubits: n = 10

II)

I)

1000 Integrations with the same proposal



Quantum Adaptive Importance Sampling
Impact of Quasi-Random Sequences

,

Pseudo-Random (Marsenne Twister) Quasi-Random (Sobol Sequence)


