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Data from multiple sources

Integer factoring, Quantum chemistry

Application-to-Devices 
Resource Gap

Higher qubit counts are not sufficient! Need high-quality 
physical qubits for error correction. Need architecture to 
provide high fidelity/performance executions on resource-
constrained hardware

Quantum chemistry VQE 
Combinatorial optimization QAOA



Practically useful quantum computing

Need quantum applications with commercial or scientific 
relevance & reasonable resources needs (qubits, time)

Adapted from Hoefler et al. CACM 2023



Challenge 1: A variety of hardware platforms

Superconducting qubits    Trapped ion qubits

Source: Google, IonQ

Nanosecond operations, fSim/CZ gates Microsecond operations, XX gates



Challenge 2: A range of applications

Large scale applications

• 2048-bit RSA factoring

• 2000+ qubits

• 1010 operations

Simplest scientific applications

•  10x10 Ising model simulation

•  100 qubits

•  10000 operations`



Challenge 3: A variety of error correction schemes
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Surface code

http://thequantuminsider.com/2022/05/12/microsoft-researchers-say-floquet-codes-boost-topological-qubit-error-correction/

https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.5.030352



Manual resource estimation is hard!

• Specific to one combination of algorithm and architecture
• Factoring on superconducting qubits: Gidney & Ekera 2021

• Multiple interacting layers in the stack

• Focus on logical estimates:
• Elliptic curve discrete logarithms Rotteler et al. 2017

• Hinders design exploration:
• Need deep full-stack expertise

• Hard to play with assumptions -> recomputations across the stack

• Error prone



Physical qubit model

Physical microarchitecture 
model 

Logical microarchitecture 
model

Instruction Set Model

Quantum compiler/Layout 
model

Application code

Resource EstimationTechnique 1: 
An appropriate 
set of abstractions

Physical qubits on a device

Gate implementation, connectivity, 
native gate set

QEC using gates and distillation factories

Logical operations

Map application onto a logical 
qubit architecture

In a high-level language like 
Python/Q#



Technique 2: Scalable compiler & application 
modelling

• Reduce application operations:
• Use a compilation technique that removes Cliffords operations

• Optimizations to parallelize rotation operations

• Accelerate parts needed for resource estimation:
• Count operations rather than full-blown compilation

• Caching of resource counts for functions and loops

• User annotations in the program to help the compiler recognize parts 
where resource are the same



Technique 3: Automatic architecture optimization

• Choose error correction properties considering physical qubit 
properties and application needs

• Choose the appropriate type and number of magic state factories

• Adjust magic state production vs. consumption needs



Resource estimation to guide architectural design



Co-design is critical for practical-scale quantum

Qubit choices have a dramatic impact 
on resource requirement – not all 

qubit types may scale

Need upwards of a million qubits 
for commercial applications

Co-design and full-stack optimization is 
crucial to understand scalability --- not 

just physical parameters



Impact

• Informs scaling criteria for qubits:
• Fast: Nanosecond operation speeds are beneficial to solve practical 

applications in under a month

• Reliable: Physical operations with 10-4 or lower error rates

• Controllable: Parallel operations across hundreds of thousands to 
million qubits 

• Central to Microsoft’s quantum strategy

• Spawned similar efforts from Google, Zapata and helps 
transition the community from noisy to fault-tolerant quantum



Need for distributed quantum computing

• Impractical monolithic device size:
• Superconducting qubits ~1mm2 or more per qubit. Million qubit 

devices need more than 1m2 wafer

• Control challenges:
• Multiple control wires per qubit. Very large wire counts and heating 

• Imperfect yield:
• Even at 100-qubit scales yield is poor. Chiplets offer a solution, but 

stills suffer yield challenges [Smith et al. MICRO’22]



Architecture for distributed 
quantum computers

arXiv:2508.19160





Research questions

• What is a feasible architecture for a distributed quantum 
computer that can offer resource-efficient executions of 
practical-scale quantum applications?

• How should individual compute nodes be organised in terms of 
the quantum network, magic state distillation and logical 
qubits?

• What node sizes lead to overall resource-efficient executions?

• What are the costs of entanglement distillation?





Distributed quantum computers are feasible

• 50ns gates, error rate of 10-4, 10MHz entanglement generation

•  Spacetime requirement is 3-4X compared to monolithic 
architectures, but with only node sizes of 40-60K qubits (not 1M 
qubits on the same chip)



Insights on distributed architecture

• 30-60% of available qubits need to dedicated to entanglement 
distillation

• Speed matching is important – slow qubit types can tolerant 
low entanglement generation rates, easing network 
requirements

• 1% Bell state error rate is a good goal for future hardware 
Current targets of 0.1% are not required*

• Detailed analysis in the paper on node sizing, error rates etc. 
(arXiv:2508.19160)

 

*https://defencescienceinstitute.com/wp-content/uploads/2025/ 07/DARPA-SN-25-98.pdf



Takeaways

1. Large gap between application needs and hardware capability

2. Resource estimation helps us model and design for practical 
quantum advantage

3. Large devices beyond 1M qubits are needed for practical 
quantum advantage

4. Distributed quantum computers offer a feasible path forward. 
Need 3-4X resources of monolithic designs, but allow us to limit 
device sizes to range of 40-60K qubits

prakashmurali.bitbucket.io
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