
Architecting Scalable Quantum Computers
Using Resource Estimation

Prakash Murali

Associate Professor of Computer Architecture

Data from multiple sources

Integer factoring, Quantum chemistry

Application-to-Devices
Resource Gap

Higher qubit counts are not sufficient! Need high-quality
physical qubits for error correction. Need architecture to
provide high fidelity/performance executions on resource-
constrained hardware

Quantum chemistry VQE
Combinatorial optimization QAOA

Practically useful quantum computing

Need quantum applications with commercial or scientific
relevance & reasonable resources needs (qubits, time)

Adapted from Hoefler et al. CACM 2023

Challenge 1: A variety of hardware platforms

Superconducting qubits Trapped ion qubits

Source: Google, IonQ

Nanosecond operations, fSim/CZ gates Microsecond operations, XX gates

Challenge 2: A range of applications

Large scale applications

• 2048-bit RSA factoring

• 2000+ qubits

• 1010 operations

Simplest scientific applications

• 10x10 Ising model simulation

• 100 qubits

• 10000 operations`

Challenge 3: A variety of error correction schemes

XXXX ZZZZ

012

345

678

Surface code

http://thequantuminsider.com/2022/05/12/microsoft-researchers-say-floquet-codes-boost-topological-qubit-error-correction/

https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.5.030352

Manual resource estimation is hard!

• Specific to one combination of algorithm and architecture
• Factoring on superconducting qubits: Gidney & Ekera 2021

• Multiple interacting layers in the stack

• Focus on logical estimates:
• Elliptic curve discrete logarithms Rotteler et al. 2017

• Hinders design exploration:
• Need deep full-stack expertise

• Hard to play with assumptions -> recomputations across the stack

• Error prone

Physical qubit model

Physical microarchitecture
model

Logical microarchitecture
model

Instruction Set Model

Quantum compiler/Layout
model

Application code

Resource EstimationTechnique 1:
An appropriate
set of abstractions

Physical qubits on a device

Gate implementation, connectivity,
native gate set

QEC using gates and distillation factories

Logical operations

Map application onto a logical
qubit architecture

In a high-level language like
Python/Q#

Technique 2: Scalable compiler & application
modelling

• Reduce application operations:
• Use a compilation technique that removes Cliffords operations

• Optimizations to parallelize rotation operations

• Accelerate parts needed for resource estimation:
• Count operations rather than full-blown compilation

• Caching of resource counts for functions and loops

• User annotations in the program to help the compiler recognize parts
where resource are the same

Technique 3: Automatic architecture optimization

• Choose error correction properties considering physical qubit
properties and application needs

• Choose the appropriate type and number of magic state factories

• Adjust magic state production vs. consumption needs

Resource estimation to guide architectural design

Co-design is critical for practical-scale quantum

Qubit choices have a dramatic impact
on resource requirement – not all

qubit types may scale

Need upwards of a million qubits
for commercial applications

Co-design and full-stack optimization is
crucial to understand scalability --- not

just physical parameters

Impact

• Informs scaling criteria for qubits:
• Fast: Nanosecond operation speeds are beneficial to solve practical

applications in under a month

• Reliable: Physical operations with 10-4 or lower error rates

• Controllable: Parallel operations across hundreds of thousands to
million qubits

• Central to Microsoft’s quantum strategy

• Spawned similar efforts from Google, Zapata and helps
transition the community from noisy to fault-tolerant quantum

Need for distributed quantum computing

• Impractical monolithic device size:
• Superconducting qubits ~1mm2 or more per qubit. Million qubit

devices need more than 1m2 wafer

• Control challenges:
• Multiple control wires per qubit. Very large wire counts and heating

• Imperfect yield:
• Even at 100-qubit scales yield is poor. Chiplets offer a solution, but

stills suffer yield challenges [Smith et al. MICRO’22]

Architecture for distributed
quantum computers

arXiv:2508.19160

Research questions

• What is a feasible architecture for a distributed quantum
computer that can offer resource-efficient executions of
practical-scale quantum applications?

• How should individual compute nodes be organised in terms of
the quantum network, magic state distillation and logical
qubits?

• What node sizes lead to overall resource-efficient executions?

• What are the costs of entanglement distillation?

Distributed quantum computers are feasible

• 50ns gates, error rate of 10-4, 10MHz entanglement generation

• Spacetime requirement is 3-4X compared to monolithic
architectures, but with only node sizes of 40-60K qubits (not 1M
qubits on the same chip)

Insights on distributed architecture

• 30-60% of available qubits need to dedicated to entanglement
distillation

• Speed matching is important – slow qubit types can tolerant
low entanglement generation rates, easing network
requirements

• 1% Bell state error rate is a good goal for future hardware
Current targets of 0.1% are not required*

• Detailed analysis in the paper on node sizing, error rates etc.
(arXiv:2508.19160)

*https://defencescienceinstitute.com/wp-content/uploads/2025/ 07/DARPA-SN-25-98.pdf

Takeaways

1. Large gap between application needs and hardware capability

2. Resource estimation helps us model and design for practical
quantum advantage

3. Large devices beyond 1M qubits are needed for practical
quantum advantage

4. Distributed quantum computers offer a feasible path forward.
Need 3-4X resources of monolithic designs, but allow us to limit
device sizes to range of 40-60K qubits

prakashmurali.bitbucket.io

	Slide 1: Architecting Scalable Quantum Computers Using Resource Estimation
	Slide 2
	Slide 3: Practically useful quantum computing
	Slide 4: Challenge 1: A variety of hardware platforms
	Slide 5: Challenge 2: A range of applications
	Slide 6: Challenge 3: A variety of error correction schemes
	Slide 7: Manual resource estimation is hard!
	Slide 8: Technique 1: An appropriate set of abstractions
	Slide 9: Technique 2: Scalable compiler & application modelling
	Slide 10: Technique 3: Automatic architecture optimization
	Slide 11: Resource estimation to guide architectural design
	Slide 12: Co-design is critical for practical-scale quantum
	Slide 13: Impact
	Slide 14: Need for distributed quantum computing
	Slide 15: Architecture for distributed quantum computers
	Slide 16
	Slide 17: Research questions
	Slide 18
	Slide 19: Distributed quantum computers are feasible
	Slide 20: Insights on distributed architecture
	Slide 21: Takeaways

