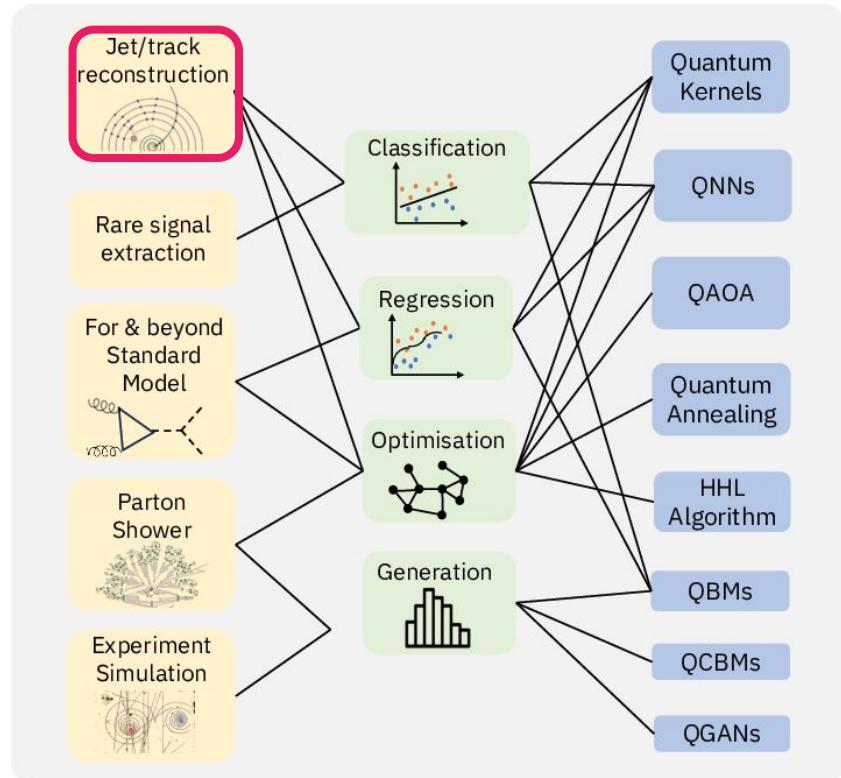


Progress towards scalable quantum computing for HEP

Miriam Lucio Martínez

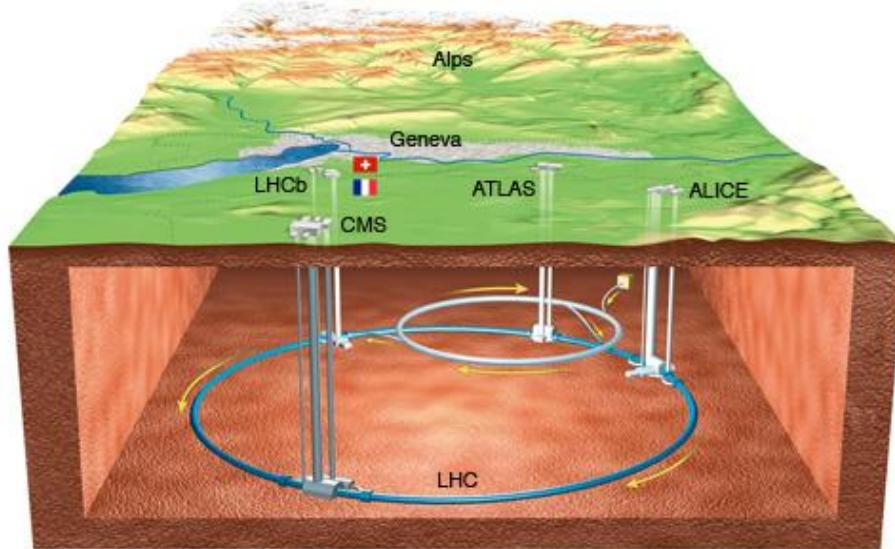
HEP use-cases

- Summary of the QC4HEP WG
- Focused mostly in projects concerning experimental particle physics at **LHC** and **LHCb**
- (LHC) Events are **quantum** in nature, but measurements are **classical**



The LHCb detector

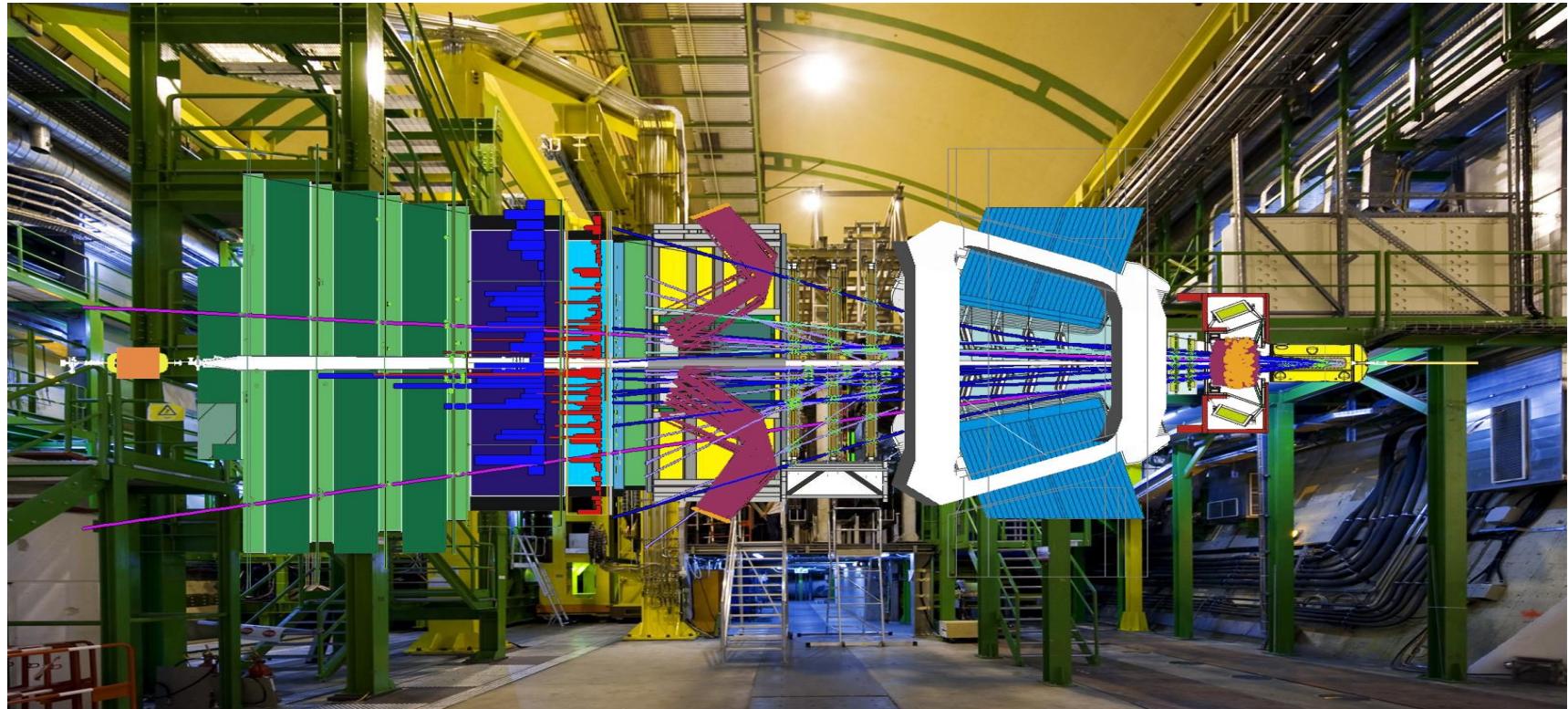
One of the 4 main experiments @ Large Hadron Collider at **CERN**



- Initially designed for the study of the **b,c-quarks**
- Now evolved into a general purpose spectrometer in the forward region
- Look for hints of BSM physics

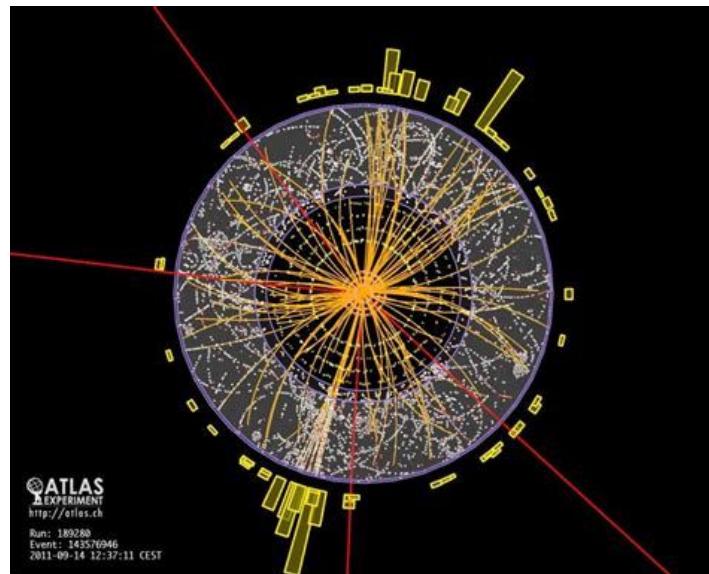
How does an event look like?

Reconstruct events **40 Million times per second.**



Track reconstruction

- Recover the original trajectories from signals left by **charged particles**
 - signals \rightarrow 3D points or **hits**
 - need efficient distinction between the combinations of hits that are of interest and those that aren't
- Typical event: large number of **tracks**, modelled by a collection of **segments**

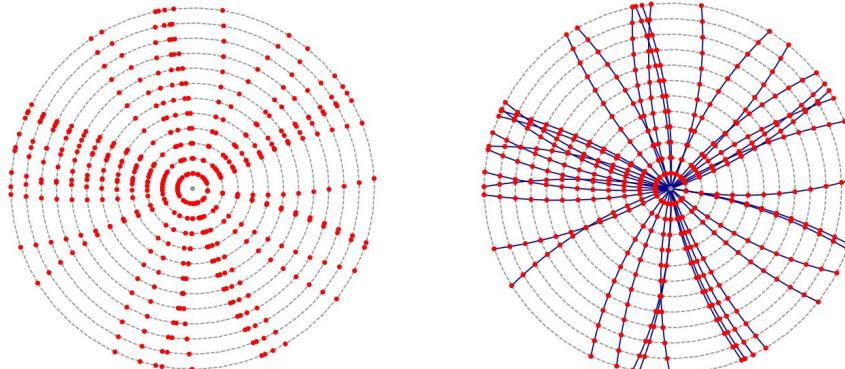


Track Reconstruction

- **Local tracking methods:** steps are performed sequentially. Some studies exist on QC for local tracking methods [arXiv:2104.11583]
- **Global tracking methods:** all hits are processed by the algorithm in the same way. Global algorithms are **clustering** algorithms. E.g.: QAOA, quantum annealing, Hopfield Networks, Hough transform

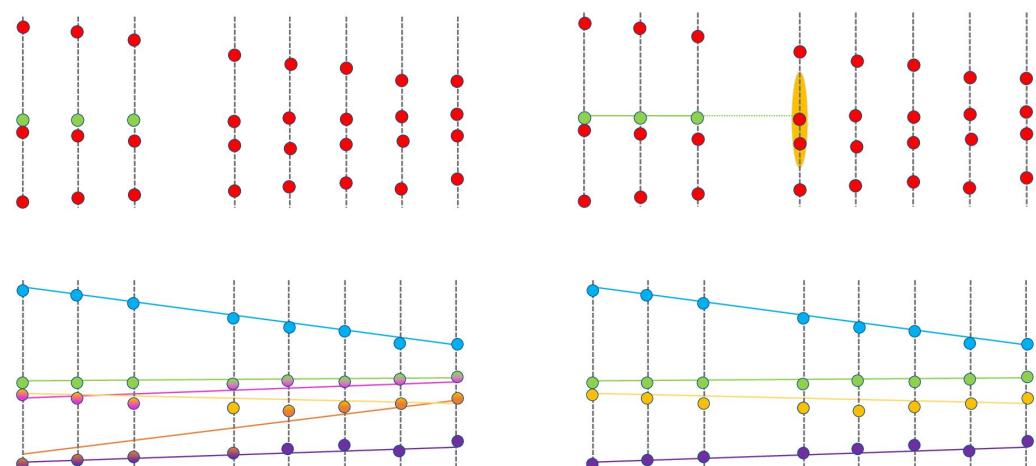
→ LHCb's current method of search by triplet

→ Focus of this talk:
global algorithms



Local tracking methods [arXiv:2104.11583]

1. Seeding
2. Track building
3. Cleaning
4. Selection



Tracking stages	Input size	Output size	Classical complexity	Quantum complexity
Seeding	$O(n)$	k_{seed}	$O(n^c)$ (Theorem 2)	$\tilde{O}(\sqrt{k_{\text{seed}} \cdot n^c})$ (Theorem 3)
Track Building	$k_{\text{seed}} + O(n)$	k_{cand}	$O(k_{\text{seed}} \cdot n)$ (Theorem 4)	$\tilde{O}(k_{\text{seed}} \cdot \sqrt{n})$ (Theorem 5)
Cleaning (original)	k_{cand}	$O(k_{\text{cand}})$	$O(k_{\text{cand}}^2)$ (Theorem 6)	—
Cleaning (improved)	k_{cand}	$O(k_{\text{cand}})$	$\tilde{O}(k_{\text{cand}})$ (Theorem 7)	—
Selection	$O(k_{\text{cand}})$	$O(k_{\text{cand}})$	$O(k_{\text{cand}})$ (Theorem 8)	—
Full Reconstruction	n	$O(n^c)$	$O(n^{c+1})$ (Theorems 2, 4, 7, 8)	$\tilde{O}(n^{c+0.5})$ (Theorems 3, 5, 7, 8)
Full Reconstruction with $O(n)$ reconstructed tracks	n	$O(n)$	$O(n^{c+1})$ (Theorems 2, 4, 7, 8)	$\tilde{O}(n^{(c+3)/2})$ (Theorem 9)

n: number of particles, c: number of hits, k_{seed} : total number of generated seeds, k_{cand} : number of track candidates

QC for Track Reconstruction

- Quantum Computing has very interesting prospects of improvements in algorithm **complexity/timing**
- This talk: two track reconstruction algorithms
- Define **Ising-like** $H^{\text{TrackReco}}(\text{hits})$:

$$H = -\frac{1}{2} \sum_{ij} \omega_{ij} \sigma_z^i \sigma_z^j - \sum_i \omega_i \sigma_z^i$$

→ $\mathbf{H}_{\min}^{\text{TrackReco}}$ == solution with the correct reconstructed tracks

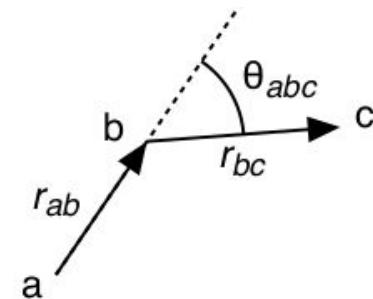
QC for Track Reconstruction

Ising-like Hamiltonian:

$$H = -\frac{1}{2} \sum_{ij} \omega_{ij} \sigma_z^i \sigma_z^j - \sum_i \omega_i \sigma_z^i$$

Segment $[S_{ab}]$: combination of hit a and hit b
→ in consecutive layers - for now

Hamiltonian accounts for **all** possible segments



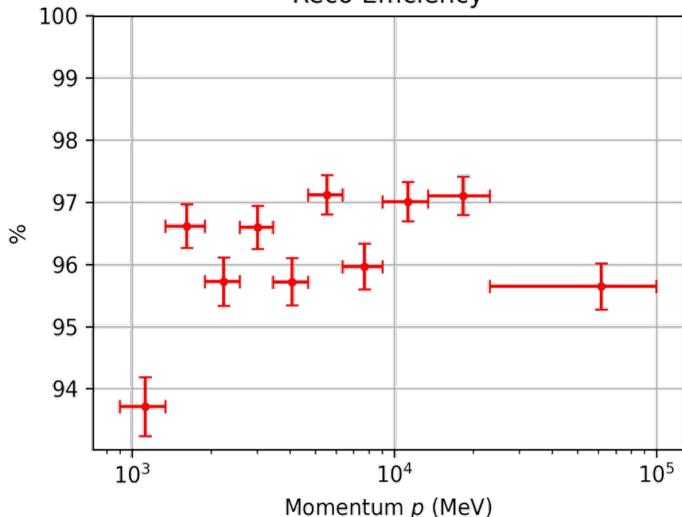
(Some) related results

[[JINST 18 \(2023\) 11, P11028](#)]

HHL algorithm

$$\nabla \mathcal{H} = 0 \Rightarrow A\mathbf{S} = \mathbf{b}$$

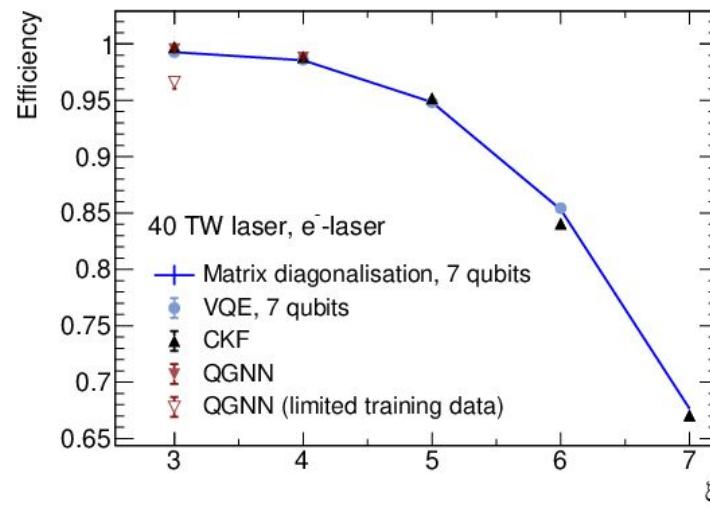
Reco Efficiency



[[Comput.Softw.Big Sci. 7 \(2023\) 1, 14](#)]

Variational Quantum Eigensolver

LUXE



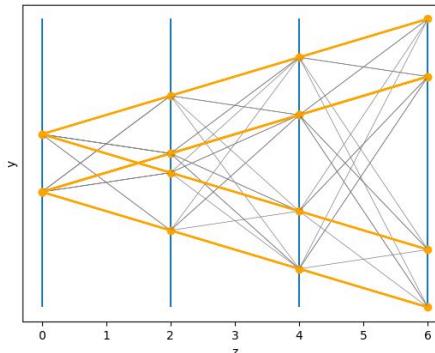
QAOA implementation

$$\mathcal{H} = -\frac{1}{2} \left[\left(\sum_{a,b,c} \frac{\cos^\lambda(\theta_{abc})}{r_{ab} + r_{bc}} s_{ab} s_{bc} \right) - \alpha \left(\sum_{b \neq c} s_{ab} s_{ac} + \sum_{a \neq c} s_{ab} s_{cb} \right) - \beta \left(\sum_{a,b} s_{ab} - N \right)^2 \right]$$

- (1) main term: favours aligned, short segments
- (2) 1st penalty term: forbids segments that share head/tail from belonging to the same track
- (3) 2nd penalty term: keeps the number of active segments equal to #hits

Results from simulation

- **Successful** implementation and validation for small simulations
- Scalability poses an issue, affecting especially the simulator
 - triplets instead of doublets → worse scalability

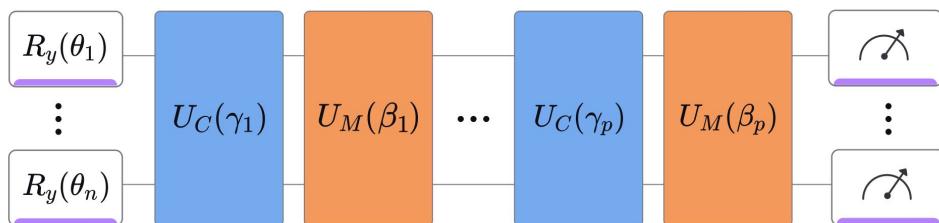
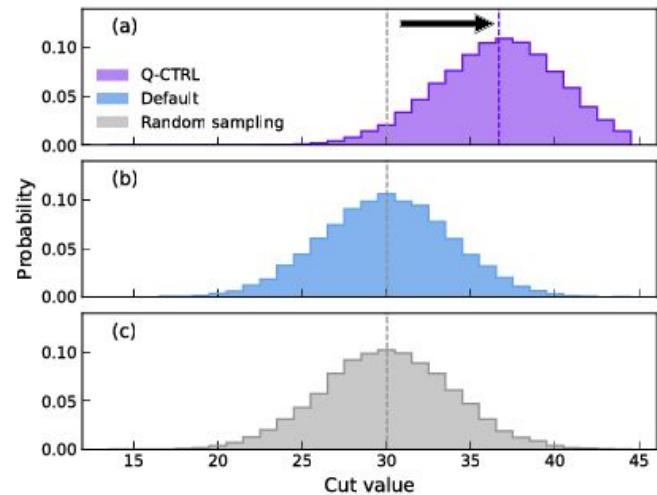


# tracks	# layers	#qubits (segment s)	Circuit depth
2	3	8	103
2	4	12	223
3	3	18	497
3	4	27	1105
4	3	32	1553
4	4	48	3473
5	3	50	3775
5	4	75	8463

Modified QAOA (with P. Pariente, V. Chobanova, IFIC-UdC)

Using results from Q-CTRL and IBM

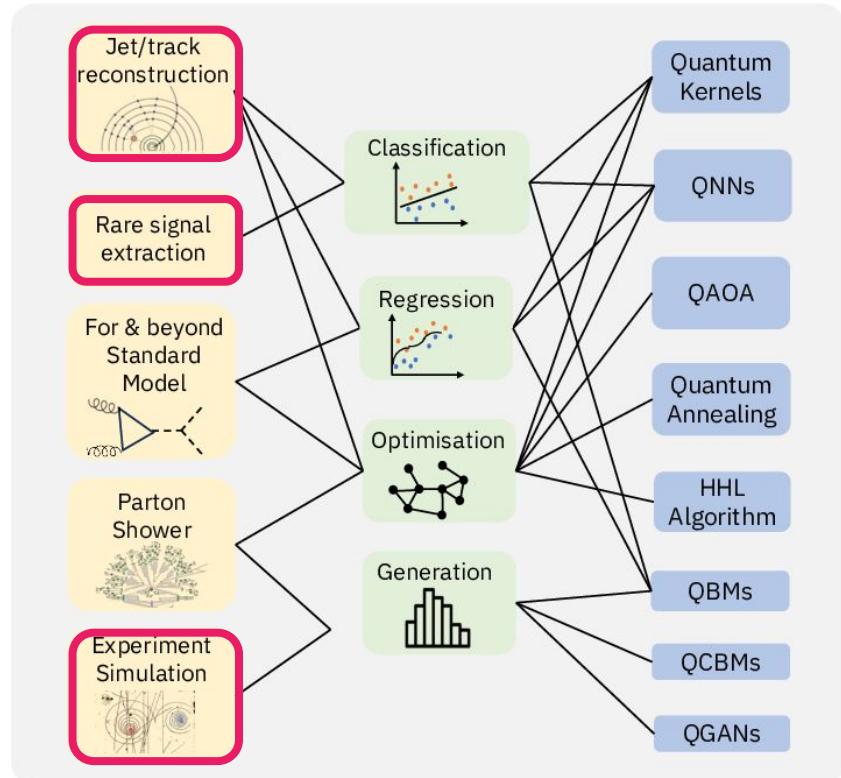
[[arXiv:2406.01743v1](https://arxiv.org/abs/2406.01743v1)]



→ pdf of finding the correct solution seems to decrease

Ongoing/future work

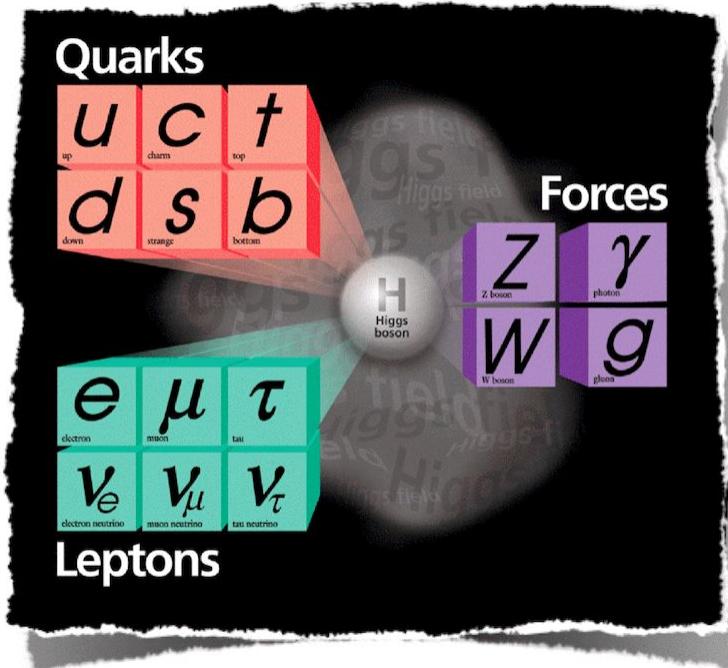
- Sustainability & Quantum: project with **GSoC & IFIC-UV**
 - Using ACTS as framework
 - Comparison in terms of computational complexity Quantum and Classical
- Try simulation using **Rydberg atoms, encoding**
- **Distributed** QAOA (OakRidge)
- Further applications of QAOA for HEP with better scalability and/or different use-cases



Thanks for your attention!

The Standard Model of Particle Physics

A successful theory that describes the interactions among particles ...



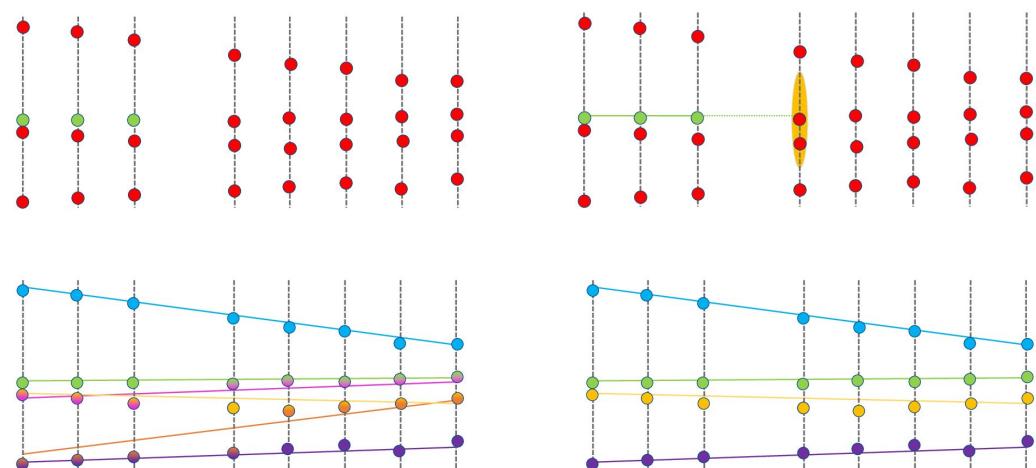
... but fails to explain several phenomena observed in the Universe:

- Neutrinos masses
- Origin of Dark Matter & Dark Energy
- etc

⇒ need of **Beyond the Standard Model physics!!**

Local tracking methods [arXiv:2104.11583]

1. Seeding
2. Track building
3. Cleaning
4. Selection



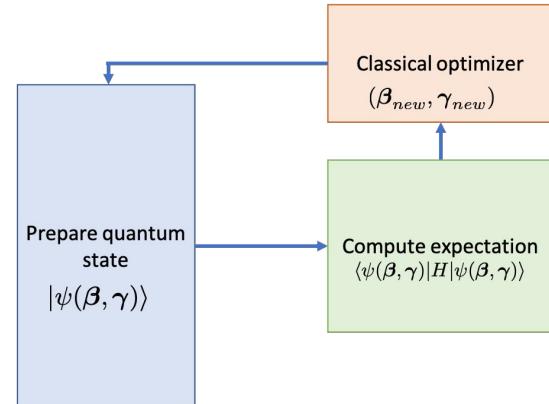
QAOA for Track Reconstruction

- Quantum Approximate Optimization Algorithm [[arXiv:1411.4028](https://arxiv.org/abs/1411.4028), [tutorial](#)]
- A **variational** algorithm ideal to solve combinatorial optimization problems, e.g. Max-Cut problem
 - ‘*Finding an optimal object out of a finite set of objects*’

$$|\psi(\beta, \gamma)\rangle = U(\beta)U(\gamma)\dots U(\beta)U(\gamma) |\psi_0\rangle$$

$$U(\beta) = e^{-i\beta H_B}, \quad U(\gamma) = e^{-i\gamma H_P}$$

- H_B : mixing Hamiltonian, H_P : **problem** Hamiltonian
- **Goal:** find optimal parameters $(\beta_{\text{opt}}, \gamma_{\text{opt}})$ such that the quantum state encodes the solution to the problem



Tracking stages	Input size	Output size	Classical complexity	Quantum complexity
Seeding	$O(n)$	k_{seed}	$O(n^c)$ (Theorem 2)	$\tilde{O}(\sqrt{k_{\text{seed}} \cdot n^c})$ (Theorem 3)
Track Building	$k_{\text{seed}} + O(n)$	k_{cand}	$O(k_{\text{seed}} \cdot n)$ (Theorem 4)	$\tilde{O}(k_{\text{seed}} \cdot \sqrt{n})$ (Theorem 5)
Cleaning (original)	k_{cand}	$O(k_{\text{cand}})$	$O(k_{\text{cand}}^2)$ (Theorem 6)	—
Cleaning (improved)	k_{cand}	$O(k_{\text{cand}})$	$\tilde{O}(k_{\text{cand}})$ (Theorem 7)	—
Selection	$O(k_{\text{cand}})$	$O(k_{\text{cand}})$	$O(k_{\text{cand}})$ (Theorem 8)	—
Full Reconstruction	n	$O(n^c)$	$O(n^{c+1})$ (Theorems 2, 4, 7, 8)	$\tilde{O}(n^{c+0.5})$ (Theorems 3, 5, 7, 8)
Full Reconstruction with $O(n)$ reconstructed tracks	n	$O(n)$	$O(n^{c+1})$ (Theorems 2, 4, 7, 8)	$\tilde{O}(n^{(c+3)/2})$ (Theorem 9)

n: number of particles, c: number of hits, k_{seed} : total number of generated seeds, k_{cand} : number of track candidates

Modified QAOA (with P. Pariente, V. Chobanova, IFIC-UdC)

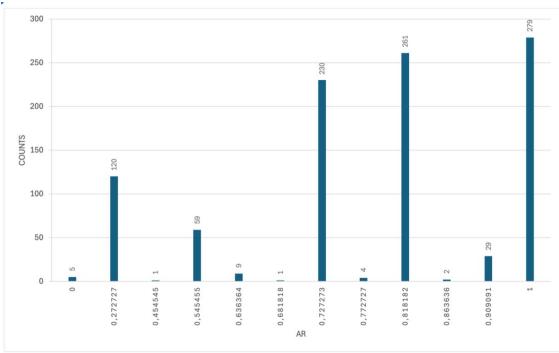
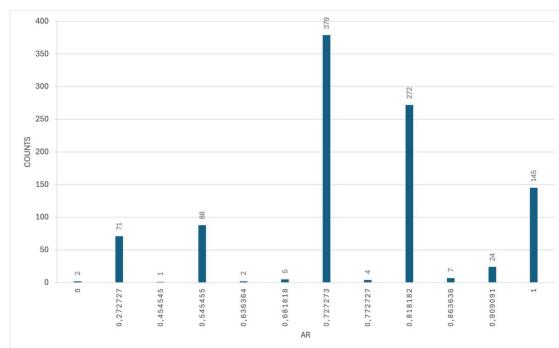
Approximation Ratio

$$AR(\vec{x}) = \frac{C(\vec{x}) - C_{max}}{C_{min} - C_{max}}$$

Success Probability

$$SP = \frac{\text{Nr. Optimal solutions}}{\text{Nr. shots}}$$

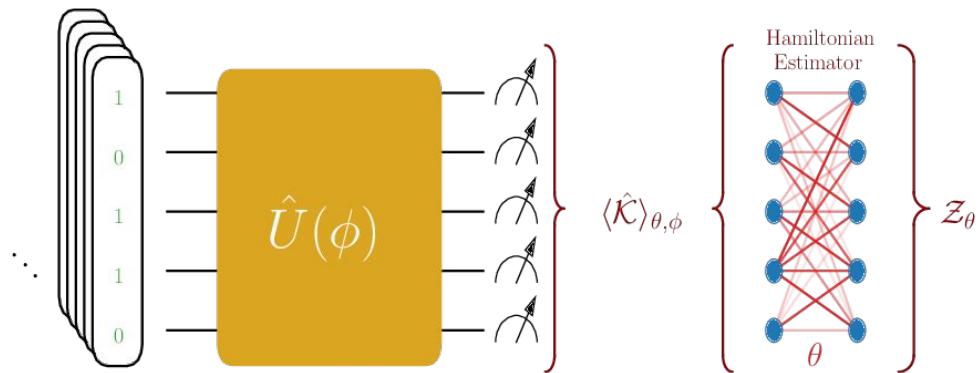
- ★ Higher depth \rightarrow higher clustering around $AR > 0.7$ for standard and modified QAOA
- ★ Modified QAOA has less occurrences with low AR, but also less at the exact solution



Another possible idea

‘Quantum-probabilistic Hamiltonian learning for generative modelling & anomaly detection’ [[arXiv:2211.00380v2](https://arxiv.org/abs/2211.00380v2)]

- Using LHC data & following a Quantum Hamiltonian-Based Models (QHBM) approach
- Generative modelling
- Anomaly detection



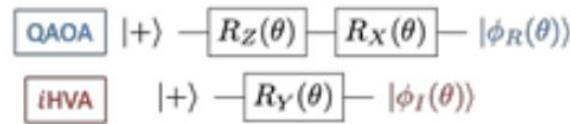
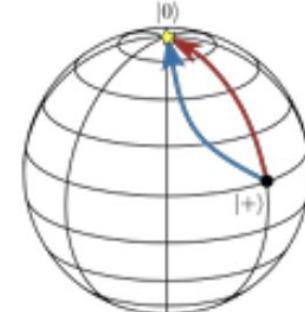
Recent progress QC4HEP-ex

iHVA (C. Tüysüz et al., DESY)

- QITE-inspired
- Avoid Barren Plateaus from QAOA
- Not unique set of gates possible
- Geodesics for parametrized quantum circuits also considered by [people at IFIC](#)

[\[arXiv:2408.09083\]](#), [Presentation at QC4HEP](#)

Target Hamiltonian: $-Z$



The **iHVA** follows the geodesic.
This leads to faster convergence.