

Quantum simulation without ancillae

María García Díaz

Departamento de Matemática Aplicada a la Ingeniería Industrial
Universidad Politécnica de Madrid

POLITÉCNICA

mathQI

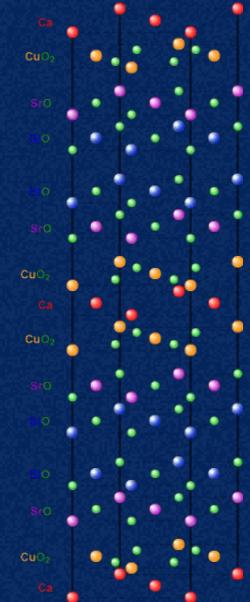
1. Motivation: what's the matter with ancillae?
2. Quantum simulation without ancillae
 - 2.1. Simulating time evolutions
 - 2.2. Simulating ground-state subspaces
3. Conclusions and open questions

Motivation

Many-body systems described by k -local Hamiltonians:

$$H = \sum_i h_i \in \mathcal{B}((\mathbb{C}^d)^{\otimes n})$$

each term h_i acts nontrivially at most on k of these hilbert spaces

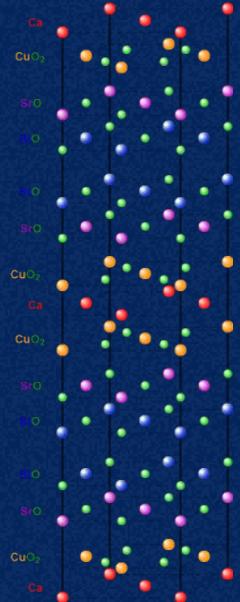


Many-body systems described by k -local Hamiltonians:

$$H = \sum_i h_i \in \mathcal{B}((\mathbb{C}^d)^{\otimes n})$$

each term h_i acts nontrivially at most on k of these hilbert spaces

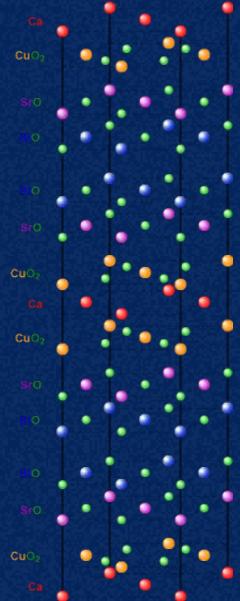
$$\begin{aligned} H_{RSC}^{(3)} = & -X_1X_2X_4X_5 - X_5X_6X_8X_9 \\ & - X_3X_6 - X_4X_7 \\ & - Z_2Z_3Z_5Z_6 - Z_4Z_5Z_7Z_8 \\ & - Z_1Z_2 - Z_8Z_9. \end{aligned}$$



Many-body systems described by k -local Hamiltonians:

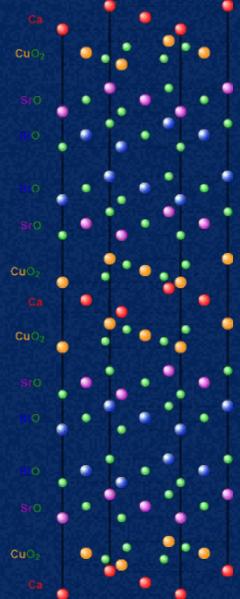
$$H = \sum_i h_i \in \mathcal{B}((\mathbb{C}^d)^{\otimes n})$$

The larger the k , the more difficult it is to realize the Hamiltonian experimentally.



Many-body systems described by k -local Hamiltonians:

$$H = \sum_i h_i \in \mathcal{B}((\mathbb{C}^d)^{\otimes n})$$



The larger the k , the more difficult it is to realize the Hamiltonian experimentally.

So if you want to measure the properties of such a complex system in the lab, you first need to find a Hamiltonian with a smaller k that describes the same physics, i.e., you need to find the Hamiltonian of your quantum simulator.

Universal quantum Hamiltonians

Toby S. Cubitt , Ashley Montanaro , and Stephen Piddock [Authors Info & Affiliations](#)

Edited by Peter W. Shor, Massachusetts Institute of Technology, Cambridge, MA, and approved August 3, 2018 (received for review March 23, 2018)

August 30, 2018 | 115 (38) 9497–9502 | <https://doi.org/10.1073/pnas.1804949115>

- Existence of 2-local universal simulators H_{QS}
- H_{QS} reproduces the whole physics of H_T
- $\dim(H_{QS}) > \dim(H_T)$

Universal quantum Hamiltonians

Toby S. Cubitt , Ashley Montanaro , and Stephen Piddock [Authors Info & Affiliations](#)

Edited by Peter W. Shor, Massachusetts Institute of Technology, Cambridge, MA, and approved August 3, 2018 (received for review March 23, 2018)

August 30, 2018 | 115 (38) 9497-9502 | <https://doi.org/10.1073/pnas.1804949115>

- Existence of 2-local universal simulators H_{QS}
- H_{QS} reproduces the whole physics of H_T
- $\dim(H_{QS}) > \dim(H_T)$

Are there k' -local H_{QS} that reproduce specific physical aspects

of a target system such that $k' < k$ and $\dim(H_{QS}) = d'^n$,

$\dim(H_T) = d^n$, with $d' = d$ and $n = n'$?

= Can we do quantum simulation without ancillae?

Universal quantum Hamiltonians

Toby S. Cubitt , Ashley Montanaro , and Stephen Piddock [Authors Info & Affiliations](#)

Edited by Peter W. Shor, Massachusetts Institute of Technology, Cambridge, MA, and approved August 3, 2018 (received for review March 23, 2018)

August 30, 2018 | 115 (38) 9497-9502 | <https://doi.org/10.1073/pnas.1804949115>

- Existence of 2-local universal simulators H_{QS}
- H_{QS} reproduces the whole physics of H_T
- $\dim(H_{QS}) > \dim(H_T)$

Are there k' -local H_{QS} that reproduce specific physical aspects

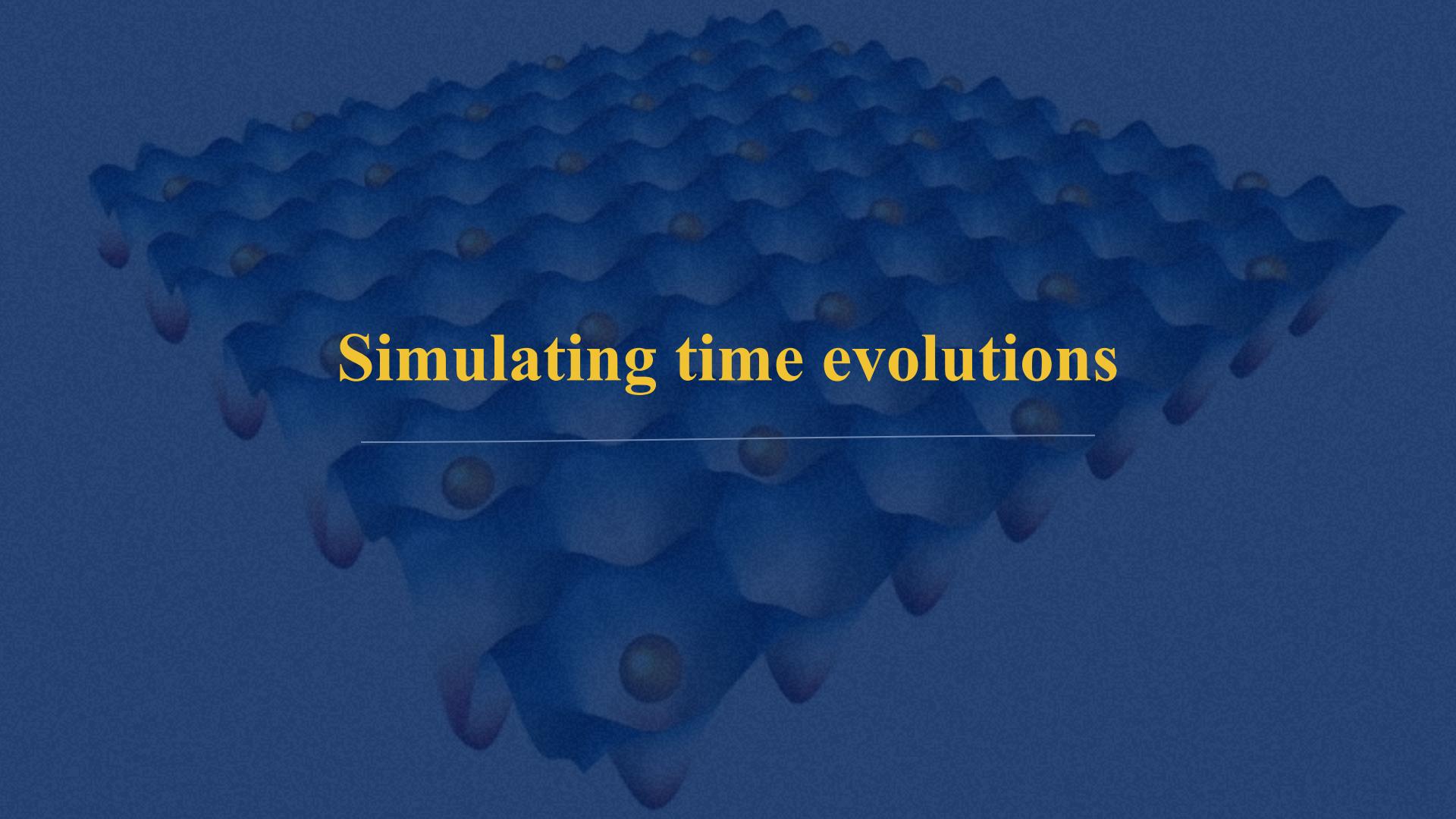
of a target system such that $k' < k$ and $\dim(H_{QS}) = d'^n$,

$\dim(H_T) = d^n$, with $d' = d$ and $n = n'$?

Time evolution

Ground-state subspace

= Can we do quantum simulation without ancillae?



Simulating time evolutions

Simplifying the simulation of local Hamiltonian dynamics

Ayaka Usui, Anna Sanpera, and María García Díaz

Phys. Rev. Research **6**, 023243 – Published 4 June 2024

Ayaka Usui,
UAB

Anna Sanpera,
UAB, ICREA

Definition 1. A Hamiltonian H_{QS} ϵ -simulates a target Hamiltonian H_T at state $|\psi\rangle$ and time t if

$$|\langle\psi|e^{itH_{QS}}e^{-itH_T}|\psi\rangle| \geq 1 - \epsilon, \quad (1)$$

with $\epsilon \in (0, 1]$.

a) Exact simulation ($\epsilon = 0$)

$$[H_T, H_{QS}] = 0$$

a) Exact simulation ($\epsilon = 0$)

$$[H_T, H_{QS}] = 0$$

If $h := H_{QS} - H_T$ is degenerate in levels

$L = \{|\ell_1\rangle, |\ell_2\rangle, \dots, |\ell_m\rangle\}$ and $|\psi\rangle \in \text{span}(L)$,
nontrivial simulation is feasible at all times t .

a) Exact simulation ($\epsilon = 0$)

$$[H_T, H_{QS}] = 0$$

If $h := H_{QS} - H_T$ is degenerate in levels

$L = \{|\ell_1\rangle, |\ell_2\rangle, \dots, |\ell_m\rangle\}$ and $|\psi\rangle \in \text{span}(L)$,
nontrivial simulation is feasible at all times t .

Simulating the Same Physics with Two Distinct Hamiltonians

Karol Gietka, Ayaka Usui, Jianqiao Deng, and Thomas Busch
Phys. Rev. Lett. **126**, 160402 – Published 22 April 2021

$$k = k' = 2$$

a) Exact simulation ($\epsilon = 0$)

$$[H_T, H_{QS}] = 0$$

If $h := H_{QS} - H_T$ is degenerate in levels

$L = \{|\ell_1\rangle, |\ell_2\rangle, \dots, |\ell_m\rangle\}$ and $|\psi\rangle \in \text{span}(L)$,
nontrivial simulation is feasible at all times t .

Simulating the Same Physics with Two Distinct Hamiltonians

Karol Gietka, Ayaka Usui, Jianqiao Deng, and Thomas Busch
Phys. Rev. Lett. **126**, 160402 – Published 22 April 2021

$$k = k' = 2$$

Simplifying the simulation of local Hamiltonian dynamics

Ayaka Usui, Anna Sanpera, and María García Díaz
Phys. Rev. Research **6**, 023243 – Published 4 June 2024

$$k = 3, k' = 2$$

$$H_T = \sum_{j=1}^4 (J_z \sigma_z^j \sigma_z^{j+1} \sigma_z^{j+2} + h_x \sigma_x^j)$$

$$H_{QS} = \sum_{j=1}^4 (J_x \sigma_x^j \sigma_x^{j+1} + J_y \sigma_y^j \sigma_y^{j+1} + J_z \sigma_z^j \sigma_z^{j+1})$$

$(J_x = J_y = J_z)$
Heisenberg model

b) Approximate simulation ($\epsilon \neq 0$)

$$|\langle \psi | e^{itH_{QS}} e^{-itH_T} |\psi \rangle| \geq 1 - \epsilon$$

b) Approximate simulation ($\epsilon \neq 0$)

$$|\langle \psi | e^{itH_{QS}} e^{-itH_T} |\psi \rangle| \geq 1 - \epsilon$$

Theorem: Every H_{QS} ϵ^* -simulates any H_T
at any $|\psi\rangle, t$ with

$$\epsilon^* = \min \left[1, \frac{t \Delta_h}{2} \right]$$

b) Approximate simulation ($\epsilon \neq 0$)

$$|\langle \psi | e^{itH_{QS}} e^{-itH_T} |\psi \rangle| \geq 1 - \epsilon$$

Theorem: Every H_{QS} ϵ^* -simulates any H_T
at any $|\psi\rangle, t$ with

$$\epsilon^* = \min \left[1, \frac{t \Delta_h}{2} \right]$$

 spectral diameter of h
(expressible by an SDP)

Simulating ground-state subspaces

(soon on arXiv!)

Simulating ground-state subspaces

Given H_T :

- k -local
- $\dim(H_T) = d^n$
- ground-state subspace $\mathcal{S} = \text{span}\{|\psi_i\rangle\}_{i=1}^M$

Simulating ground-state subspaces

Given H_T :

- k -local
- $\dim(H_T) = d^n$
- ground-state subspace $\mathcal{S} = \text{span}\{|\psi_i\rangle\}_{i=1}^M$

We want H_{QS} :

- k' -local, $k' < k$
- $\dim(H_{QS}) = d'^{n'}, d' = d, n' = n$
- ground-state subspace $\mathcal{S}' = \mathcal{S}$

Simulating ground-state subspaces

Given H_T :

- k -local
- $\dim(H_T) = d^n$
- ground-state subspace $\mathcal{S} = \text{span}\{|\psi_i\rangle\}_{i=1}^M$

We want H_{QS} :

- k' -local, $k' < k$
- $\dim(H_{QS}) = d'^{n'}, d' = d, n' = n$
- ground-state subspace $\mathcal{S}' = \mathcal{S}$

Does it exist?

If so, how is it built?

Simulating ground-state subspaces

a) Semidefinite program:

$$\begin{aligned} & \underset{\delta \in \mathbb{R}, \alpha \in \mathbb{R}^{L+1}}{\text{maximize}} && \delta \\ & \text{subject to} && PH_QS P = 0 \\ & && PH_QS Q = 0 \\ & && QH_QS Q \succeq \delta Q \\ & && H_{QS} = \alpha_0 \mathbf{1}_{d^n} + \sum_{j=1}^L \alpha_j \Lambda_j^{(k')} \\ & && a \mathbf{1}_{d^n} \preceq H_{QS} \preceq b \mathbf{1}_{d^n} \end{aligned}$$

Simulating ground-state subspaces

a) Semidefinite program:

$$\begin{aligned} & \text{maximize}_{\delta \in \mathbb{R}, \alpha \in \mathbb{R}^{L+1}} \quad \delta \\ & \text{subject to} \quad PH_QS P = 0 \\ & \quad PH_QS Q = 0 \\ & \quad QH_QS Q \succeq \delta Q \\ & \quad P = \sum_{i=1}^M |\psi_i\rangle\langle\psi_i| \\ & \quad H_QS = \alpha_0 1_{d^n} + \sum_{j=1}^L \alpha_j \Lambda_j^{(k')} \\ & \quad a 1_{d^n} \preceq H_QS \preceq b 1_{d^n} \\ & \quad Q = 1_{d^n} - P \end{aligned}$$

generators of ℓ -body interactions,
 $\ell = 1, 2, \dots, k'$

allowed energy range

Simulating ground-state subspaces

a) Semidefinite program:

$$\begin{aligned} & \text{maximize}_{\delta \in \mathbb{R}, \alpha \in \mathbb{R}^{L+1}} \quad \delta \\ & \text{subject to} \quad PH_{QS}P = 0 \\ & \quad PH_{QS}Q = 0 \\ & \quad QH_{QS}Q \succeq \delta Q \\ & \quad H_{QS} = \alpha_0 \mathbf{1}_{d^n} + \sum_{j=1}^L \alpha_j \Lambda_j^{(k')} \\ & \quad a\mathbf{1}_{d^n} \preceq H_{QS} \preceq b\mathbf{1}_{d^n} \end{aligned}$$

$\rightarrow \delta^* = 0$: \nexists k' -local parent to \mathcal{S}

$\rightarrow \delta^* \neq 0$: H_{QS}^* k' -local parent to \mathcal{S} with largest spectral gap

Simulating ground-state subspaces

- b) Simple algebraic method (built upon

Method to identify parent Hamiltonians for trial states (

[Martin Greiter](#), [Vera Schnell](#), and [Ronny Thomale](#)

Physical Review B

Simulating ground-state subspaces

b) Simple algebraic method:

1) Find $\boldsymbol{\alpha}$ such that

$$\left(\sum_{j=1}^L \alpha_j \Lambda_j^{(k')} \right) |\psi_i\rangle = -\alpha_0 |\psi_i\rangle, \quad \forall i = 1, \dots, M.$$

Simulating ground-state subspaces

b) Simple algebraic method:

1) Find $\boldsymbol{\alpha}$ such that

$$\left(\sum_{j=1}^L \alpha_j \Lambda_j^{(k')} \right) |\psi_i\rangle = -\alpha_0 |\psi_i\rangle, \quad \forall i = 1, \dots, M.$$

Equivalent to finding $\boldsymbol{\alpha}$ such that

$$\boldsymbol{\alpha} \in \mathcal{K} := \bigcap_{i=1}^M \ker(C^{(i)})$$

Simulating ground-state subspaces

b) Simple algebraic method:

1) Find $\boldsymbol{\alpha}$ such that

$$\left(\sum_{j=1}^L \alpha_j \Lambda_j^{(k')} \right) |\psi_i\rangle = -\alpha_0 |\psi_i\rangle, \quad \forall i = 1, \dots, M.$$

Equivalent to finding $\boldsymbol{\alpha}$ such that

$$\boldsymbol{\alpha} \in \mathcal{K} := \bigcap_{i=1}^M \ker(C^{(i)})$$

$$C_{\ell j}^{(i)} := \langle \psi_i | \Lambda_\ell^{(k')} \Lambda_j^{(k')} | \psi_i \rangle$$

$$\Lambda_0^{(k')} := \mathbf{1}_{d^n}$$

Simulating ground-state subspaces

b) Simple algebraic method:

2) Pick some $\alpha \in \mathcal{K}$ and build H_{QS} :

$$H_{QS} = \sum_{j=1}^L \alpha_j \Lambda_j^{(k')}$$

Simulating ground-state subspaces

b) Simple algebraic method:

2) Pick some $\alpha \in \mathcal{K}$ and build H_{QS} :

$$H_{QS} = \sum_{j=1}^L \alpha_j \Lambda_j^{(k')}$$

3) Diagonalize H_{QS} . It will be a suitable parent Hamiltonian if

$-\alpha_0$ is the ground energy and $\mathcal{S}' = \mathcal{S}$

Simulating ground-state subspaces

b) Simple algebraic method:

-Cons: Diagonalization needed!

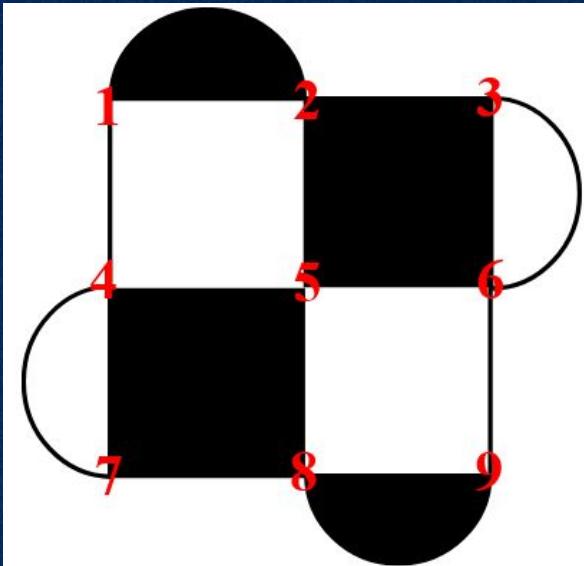
Simulating ground-state subspaces

b) Simple algebraic method:

-Cons: Diagonalization needed!

-Pros: Allows to check whether the target subspace appears as an excited eigenspace of some H_{QS}

Example: the Rotated Surface Code Hamiltonian



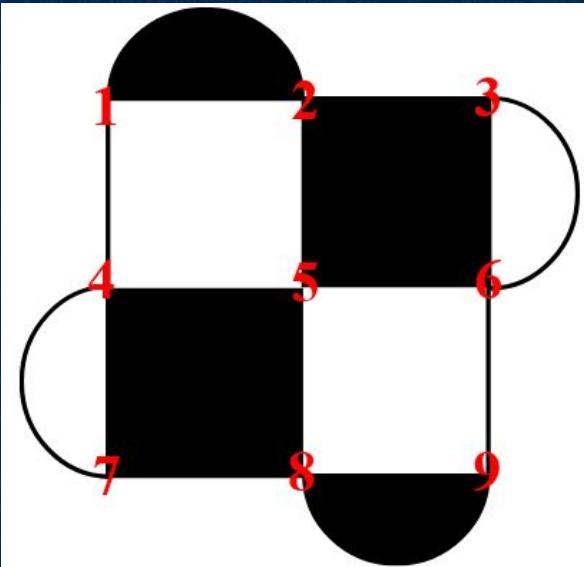
$$H_{RSC}^{(3)} = -X_1X_2X_4X_5 - X_5X_6X_8X_9 - X_3X_6 - X_4X_7 - Z_2Z_3Z_5Z_6 - Z_4Z_5Z_7Z_8 - Z_1Z_2 - Z_8Z_9.$$

$$H_{RSC}^{(L)} = - \sum_{f=1}^{F_w} A_f - \sum_{f=1}^{F_b} B_f \quad \text{where}$$

$$A_f = \prod_{j \in \partial f} X_j$$
$$B_f = \prod_{j \in \partial f} Z_j$$

- Well-known **4-local** Hamiltonian.

Example: the Rotated Surface Code Hamiltonian



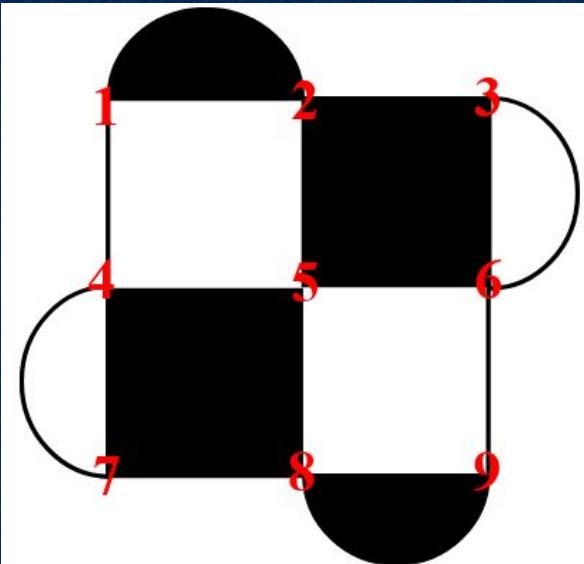
$$\begin{aligned}
 H_{RSC}^{(3)} = & -X_1X_2X_4X_5 - X_5X_6X_8X_9 \\
 & - X_3X_6 - X_4X_7 \\
 & - Z_2Z_3Z_5Z_6 - Z_4Z_5Z_7Z_8 \\
 & - Z_1Z_2 - Z_8Z_9.
 \end{aligned}$$

$$H_{RSC}^{(L)} = - \sum_{f=1}^{F_w} A_f - \sum_{f=1}^{F_b} B_f \quad \text{where}$$

$$\begin{aligned}
 A_f &= \prod_{j \in \partial f} X_j \\
 B_f &= \prod_{j \in \partial f} Z_j
 \end{aligned}$$

- Well-known **4-local** Hamiltonian.
- 2 degenerate ground states.

Example: the Rotated Surface Code Hamiltonian



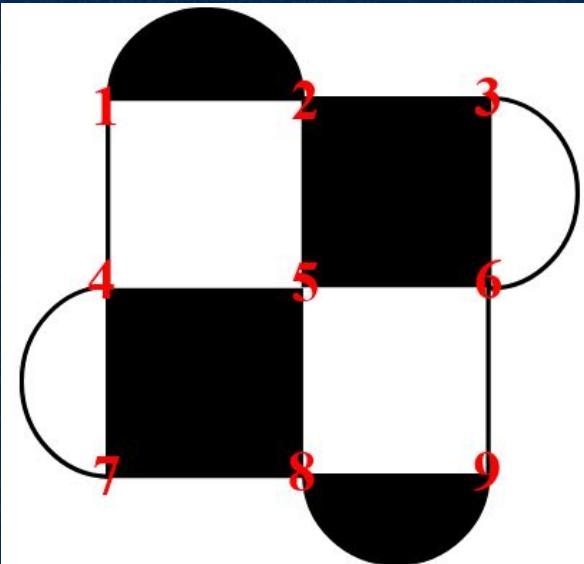
$$\begin{aligned}
 H_{RSC}^{(3)} = & -X_1 X_2 X_4 X_5 - X_5 X_6 X_8 X_9 \\
 & - X_3 X_6 - X_4 X_7 \\
 & - Z_2 Z_3 Z_5 Z_6 - Z_4 Z_5 Z_7 Z_8 \\
 & - Z_1 Z_2 - Z_8 Z_9.
 \end{aligned}$$

$$H_{RSC}^{(L)} = - \sum_{f=1}^{F_w} A_f - \sum_{f=1}^{F_b} B_f \quad \text{where}$$

$$\begin{aligned}
 A_f &= \prod_{j \in \partial f} X_j \\
 B_f &= \prod_{j \in \partial f} Z_j
 \end{aligned}$$

- Well-known **4-local** Hamiltonian.
- **2 degenerate ground states.**
- Ground space exhibits **topological order** (gap, ground states locally indistinguishable).

Example: the Rotated Surface Code Hamiltonian



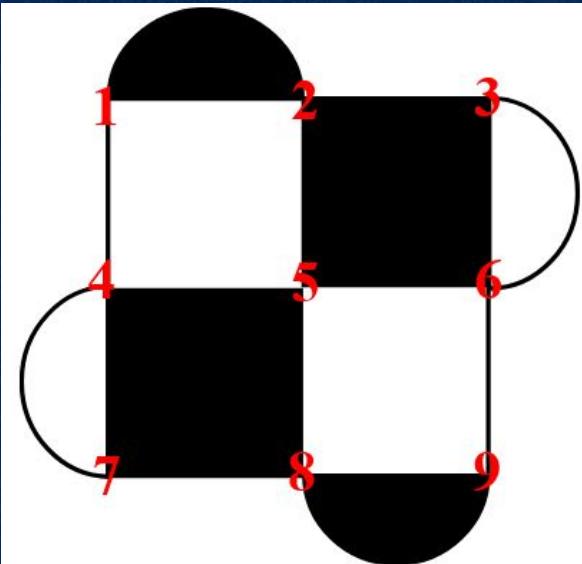
$$H_{RSC}^{(3)} = -X_1X_2X_4X_5 - X_5X_6X_8X_9 - X_3X_6 - X_4X_7 - Z_2Z_3Z_5Z_6 - Z_4Z_5Z_7Z_8 - Z_1Z_2 - Z_8Z_9.$$

$$H_{RSC}^{(L)} = - \sum_{f=1}^{F_w} A_f - \sum_{f=1}^{F_b} B_f \quad \text{where}$$

$$A_f = \prod_{j \in \partial f} X_j$$
$$B_f = \prod_{j \in \partial f} Z_j$$

- Well-known **4-local** Hamiltonian.
- **2 degenerate ground states.**
- Ground space exhibits **topological order** (gap, ground states locally indistinguishable).
- **1 protected qubit** can be encoded in ground space.

Example: the Rotated Surface Code Hamiltonian



$$\begin{aligned}
 H_{RSC}^{(3)} = & -X_1X_2X_4X_5 - X_5X_6X_8X_9 \\
 & - X_3X_6 - X_4X_7 \\
 & - Z_2Z_3Z_5Z_6 - Z_4Z_5Z_7Z_8 \\
 & - Z_1Z_2 - Z_8Z_9.
 \end{aligned}$$

$$H_{RSC}^{(L)} = - \sum_{f=1}^{F_w} A_f - \sum_{f=1}^{F_b} B_f \quad \text{where}$$

$$\begin{aligned}
 A_f &= \prod_{j \in \partial f} X_j \\
 B_f &= \prod_{j \in \partial f} Z_j
 \end{aligned}$$

- Well-known **4-local** Hamiltonian.
- **2 degenerate ground states.**
- Ground space exhibits **topological order** (gap, ground states locally indistinguishable).
- **1 protected qubit** can be encoded in ground space.
- Ground states exhibit **long-range entanglement**.

 Example: the Rotated Surface Code Hamiltonian

Results:

- **Sanity check:** no 2,3-local n -qubit parent Hamiltonian for the ground space of H_{RSC} (proven analytically in

Graph states as ground states of many-body spin-1 / 2 Hamiltonians

[M. Van den Nest¹](#), [K. Luttmer¹](#), [W. Dür^{1,2}](#), and [H. J. Briegel^{1,2}](#)

Physical Review A

Example: the Rotated Surface Code Hamiltonian

Results:

- **Sanity check:** no 2,3-local n -qubit parent Hamiltonian for the ground space of H_{RSC} (proven analytically in
Graph states as ground states of many-body spin-1/2 Hamiltonians
[M. Van den Nest¹](#), [K. Lüttemer¹](#), [W. Dür^{1,2}](#), and [H. J. Briegel^{1,2}](#)
Physical Review A).
- We obtain the 4-local n -qubit parent Hamiltonian with **largest spectral gap** for a fixed energy range.

Example: the Rotated Surface Code Hamiltonian

Results:

- **Sanity check:** no 2,3-local n -qubit parent Hamiltonian for the ground space of H_{RSC} (proven analytically in
Graph states as ground states of many-body spin-1/2 Hamiltonians
[M. Van den Nest¹](#), [K. Lüttemer¹](#), [W. Dür^{1,2}](#), and [H. J. Briegel^{1,2}](#)
- We obtain the 4-local n -qubit parent Hamiltonian with **largest spectral gap** for a fixed energy range.
- For 2x2 and 3x3 lattices, the ground space of H_{RSC} appears as an **excited eigenspace** of 2,3-local n -qubit Hamiltonians, up to errors of order machine precision.

Conclusions and open questions

- Instances can be found of k' -local Hamiltonians leading to the same dynamics as given k -local Hamiltonians of the same dimension, with $k' < k$, for a particular subspace of initial states. Q: given any H_T , is there always a suitable H_{QS} ? If not, what is the relative volume of the manifold of simulatable H_T ? What is the largest dimension that the subspace of initial states can have for each case?

Conclusions and open questions

- Instances can be found of k' -local Hamiltonians leading to the same dynamics as given k -local Hamiltonians of the same dimension, with $k' < k$, for a particular subspace of initial states. **Q:** given any H_T , is there always a suitable H_{QS} ? If not, what is the relative volume of the manifold of simulatable H_T ? What is the largest dimension that the subspace of initial states can have for each case?
- The spectral diameter of H_{QS} - H_T , expressible by an SDP, sets a benchmark on the performance of H_{QS} at simulating the dynamics of H_T . **Q:** how does the spectral diameter change with the locality of H_{QS} ?

Conclusions and open questions

- Instances can be found of k' -local Hamiltonians leading to the same dynamics as given k -local Hamiltonians of the same dimension, with $k' < k$, for a particular subspace of initial states. Q: given any H_T , is there always a suitable H_{QS} ? If not, what is the relative volume of the manifold of simulatable H_T ? What is the largest dimension that the subspace of initial states can have for each case?
- The spectral diameter of H_{QS} - H_T , expressible by an SDP, sets a benchmark on the performance of H_{QS} at simulating the dynamics of H_T . Q: how does the spectral diameter change with the locality of H_{QS} ?
- Given a target ground space, an SDP can be solved to i) determine whether a k' -local parent Hamiltonian exists, ii) if so, construct the one maximizing the spectral gap. Q: aside from the ground space of H_{RSC} , which other interesting states would benefit from having a more local parent Hamiltonian?

Conclusions and open questions

- Instances can be found of k' -local Hamiltonians leading to the same dynamics as given k -local Hamiltonians of the same dimension, with $k' < k$, for a particular subspace of initial states. Q: given any H_T , is there always a suitable H_{QS} ? If not, what is the relative volume of the manifold of simulatable H_T ? What is the largest dimension that the subspace of initial states can have for each case?
- The spectral diameter of H_{QS} - H_T , expressible by an SDP, sets a benchmark on the performance of H_{QS} at simulating the dynamics of H_T . Q: how does the spectral diameter change with the locality of H_{QS} ?
- Given a target ground space, an SDP can be solved to i) determine whether a k' -local parent Hamiltonian exists, ii) if so, construct the one maximizing the spectral gap. Q: aside from the ground space of H_{RSC} , which other interesting states would benefit from having a more local parent Hamiltonian?
- The ground space of H_{RSC} may appear as an excited subspace of 2,3-local Hamiltonians, up to errors of order machine precision. Q: is this true for other stabilizer states, e.g. GHZ?

Thanks for your attention

POLITÉCNICA

lecturer positions opening soon!