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So if you want to measure the properties of such a complex system in the lab, 
you first need to find a Hamiltonian with a smaller k that describes the same 
physics, i.e., you need to find the Hamiltonian of your quantum simulator.
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Time evolution

Ground-state subspace

  



Simulating time evolutions
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b)  Approximate simulation
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b)  Approximate simulation

spectral diameter of h 
(expressible by an SDP)



Simulating ground-state subspaces

(soon on arXiv!)
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Does it exist?

If so, how is it built?



Simulating ground-state subspaces 
a) Semidefinite program:

  



Simulating ground-state subspaces 
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Simulating ground-state subspaces 
b)    Simple algebraic method:

  

-Cons: Diagonalization needed!

-Pros: Allows to check whether the target subspace appears as an excited 

eigenspace of some HQS. 
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Example: the Rotated Surface Code Hamiltonian 

where

  

● Well-known 4-local Hamiltonian.

● 2 degenerate ground states. 

● Ground space exhibits topological order (gap, 

ground states locally indistinguishable).

● 1 protected qubit can be encoded in ground 

space.

● Ground states exhibit long-range 

entanglement. 
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● Sanity check: no 2,3-local n-qubit parent Hamiltonian for the ground space of HRSC (proven 
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Results:

● Sanity check: no 2,3-local n-qubit parent Hamiltonian for the ground space of HRSC (proven 

analytically in                                                                              ).  

● We obtain the 4-local n-qubit parent Hamiltonian with largest spectral gap for a fixed energy 

range.

● For 2x2 and 3x3 lattices, the ground space of HRSC appears as an excited eigenspace of 

2,3-local n-qubit Hamiltonians, up to errors of order machine precision. 
  

Example: the Rotated Surface Code Hamiltonian 



Conclusions and open questions
● Instances can be found of k’-local Hamiltonians leading to the same dynamics as given 

k-local Hamiltonians of the same dimension, with k’<k, for a particular subspace of initial 
states. Q: given any HT , is there always a suitable HQS? If not, what is the relative volume 
of the manifold of simulatable HT? What is the largest dimension that the subspace of 
initial states can have for each case?
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● Given a target ground space, an SDP can be solved to i) determine whether a k’-local 
parent Hamiltonian exists, ii) if so, construct the one maximizing the spectral gap. Q: aside 
from the ground space of HRSC , which other interesting states would benefit from having a 
more local parent Hamiltonian?

● The ground space of HRSC may appear as an excited subspace of 2,3-local Hamiltonians,  
up to errors of order machine precision. Q: is this true for other stabilizer states, e.g. GHZ?
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