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1. Time Crystal



Time Crystal

The existence of crystals in nature is a manifestation of
spontaneous symmetry breaking, which occurs when the

lowest-energy state of a system is less symmetrical than the
equations governing the system.




Time Crystal

Wilczek (2012) thought if could make sense that a pattern that repeat in space
could do something similar on time. He introduced in 2012 a new state of matter
exhibiting periodic oscillations in the ground state. It was shown to be forbidden
in thermal equilibrium but in 2017, states whose frequency deviates from the
excitation frequency were detected in externally excited quantum systems.

Frank Wilczek, Nobel Prize (2004)
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Some subtleties and apparent difficulties associated with the notion of spontaneous breaking of time-
translation symmetry in quantum mechanics are identified and resolved. A model exhibiting that
phenomenon is displayed. The possibility and significance of breaking of imaginary time-translation
symmetry is discussed.
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Time Crystal

A time crystal is a non-equilibrium phase of matter,
characterized by spontaneous breaking of time translation
symmetry.

Translational symmetry in time was shown to be forbidden in
thermal equilibrium.

Frank Wilczek, Nobel Prize in 2004
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Observation of a discrete time crystal

J.Zhang', P W. Hess!, A. Kyprianidis', P. Becker!, A. Lee!, J. Smith!, G. Pagano', I.-D. Potirniche?, A. C. Potter?, A. Vishwanath®?,
N.Y. Yao? & C. Monroe!
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Time Crystal

QUANTUM SIMULATION
Many-body-localized discrete time crystal with a
programmable spin-based quantum simulator

J. Randali*1, C. E. Bradley'?{, F. V. van der Gronden'?, A. Galicia'Z, M. H. Abobeih’Z, M. Markham®,
D. J. Twitchen®, F. Machado®, N. Y. Yao*®, T. H. Taminiau'2*

Science 374, 1474—1478 (2021)
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2. Introduction to NV-centers
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THE NV CENTER

v’ Electron spin

v' Good properties conferred by the diamond lattice
* In particular, long Ty, T,

v’ Easy to polarize and read-out
v Easy to manipulate
v' Room temperature platform operation

v Bio-compatibility



THE NV CENTER

* When illuminated with green light:
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EXPERIMENTAL SET UP
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CONFOCAL MICROSCOPY
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CONFOCAL MICROSCOPY

1.000

0.975 ¢

=
=]
ot
=)

u
e
o
b
&

Intensity (a.u.)

0.8251

0.800 —— - : - ' -
2750 2300 2850 2900 2950 3000

50 00 6 S Optimization and characterization of laser excitation for quantum sensing with single nitrogen-vacancy centres. A. Martinez-
2 2 - Méndez, J. Moreno-Meseguer, M. Mrdzek, R. Gonzdlez, A. Wojciechowski, P. Balasubramanian, F. Jelezko, J.Prior.

X
um) arXiv:2507.10386. Journal of Applied Physics (2025).



https://arxiv.org/abs/2507.10386

COHERENT CONTROL: RABI OSCILLATION
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COHERENT CONTROL: RABI OSCILLATION
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T, RELAXOMETRY
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HAHN ECHO OSCILLATION
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3. Quantum simulations with nuclear spin layer



FABRICATION PROCESS

30 nm @ 12¢C (99.999%)
1nm @ 13C (99.99%)

100 nm | [@DREY SCEEE RS

0.5 mmI Ila substrate

30 nm

99.999 % '2C
enriched diamond
30 nm
|

<1nm

SN implantation & annealing

99.99 % 13C

enriched diamond
<1nm

99.999 % °C

100 nm enriched diamond

SN implantation & annealing

100 nm

1.1 % °C

(commercial)
diamond substrate

99.999 % 12C
enriched diamond

99.99 % 13C
enriched diamond

99.999 % 12C
enriched diamond

1.1 % 1°C
(commercial)
diamond substrate



FABRICATION PROCESS

30 nm
1nm

100 nm

0.5 mmI

30 nm
|

SN implantation & annealing

<1nm

100 nm

(3)12C (99.999%)
@ 13C (99.99%)

(1) 12C (99.999%)

lla substrate

99.999 % '2C
enriched diamond

99.99 % 13C
enriched diamond

99.999 % '2C
enriched diamond

1.1 % 13C
(commercial)
diamond substrate

1 keV

.10t ‘1\,
-

30 nm

<1nm

SN implantation & annealing

100 nm

99.999 % 12C
enriched diamond

99.99 % 13C
enriched diamond

99.999 % 12C
enriched diamond

1.1 % 1°C
(commercial)
diamond substrate



INITIALIZATION AND CONTROL OF 13C LAYER
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INITIALIZATION AND CONTROL OF 13C LAYER
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4. Experimental realization of time crystal phase



Time Crystal

A time crystal is a non-equilibrium phase of matter,

characterized by spontaneous breaking of time translation
symmetry.

Time-crystalline order manifests exhibiting
oscillations at multiples of the driving

period that persist in presence of
perturbations.

Translational symmetry in time was shown to be forbidden in
thermal equilibrium.
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Summary

1. Discrete time crystal order has been shown in a C; layer.

2. C; platform provides a scalable rout for exploring strongly correlated quantum phase.
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Summary

1. The spin conversion with MW rn-pulses is really poor. This leads to inconclusive Rabi
oscillations. AE-ODMR shows a big step ahead.

2. T, alternating measurements show high instability for measurement times of biological
relevance (1-15 min).

3. An efficient protocol to measure at low or zero magnetic field has been introduced.

4. Utilising phase and amplitude noise it is possible to increase the resolution of nano-NMR
experiments beyond the line-width paradigm.
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v’ Electron spin

v' Good properties conferred by the diamond lattice
* In particular, long Ty, T,

v’ Easy to polarize and read-out
v Easy to manipulate

v' Room temperature platform operation



NUCLEAR SPIN LAYERS IN DIAMONDS
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NUCLEAR SPIN LAYERS IN DIAMONDS
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EXPERIMENTAL SET UP
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ALIGNMENT OF THE MAGNETIC FIELD
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NUCLEAR SPIN LAYERS IN DIAMONDS
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Time Crystal

Spontaneous symmetry breaking is a fundamental concept .
Breaking of spatial translational-formation of crystals and
phase transition from liquid to solid.

A time cristal is a non-equilibrium phase of matter,
characterized by spontaneous breaking of time translation
symmetry. It is forbidden in themal equilibrium.

The interplay between periodic driving, disorder and strong
interactions in out of equilibrium systems has been predicted
to result in exotic time crystalline phases.

In condensed matter physics, a time crystal is a quantum
system of particles whose lowest-energy-state is one in
which the particles are in repetitive motion. The system
cannot lose energy to the environment and come to rest
because it is already in its quantum ground state.



INITIALIZATION AND

N implantation & annealing

Coherent control of solid state nuclear spin nano-ensembles. Unden, T,
Tomek, et al. npj Quantum Inf 4, 39 (2018). https://doi.org/10.1038/s41534-

018-0089-8
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