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Why study quantum batteries?

« The rise of quantum technologies strongly enhanced the interest in studying energetics at the quantum
level: quantum thermodynamics now guides how we envision and develop novel devices based on quantum
effects.

« The pursuit of efficient energy storage and transfer at the quantum scale has led to the development of
quantum batteries: devices able to store and release energy on demand exploiting purely quantum
features. [R. AlicRi, M. Fannes, Phys. Rev. E 87.4, 042123 (2013)]

« The interest in quantum batteries is threefold:
« they address fundamental questions about quantum energy exchange;
« they can outperform classical batteries in charging power;
« they may offer advantages in energy and time efficiency within complex quantum devices.
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Double quench protocol
« The Hamiltonian of the full system is given by H = Hy, + H. + A(t)H;,;;

A(t)

0 oE=0lg ®

« Typical figures of merit to characterize these systems are:
* Energy stored in the battery at time t:

AE(t) = Tr[p(t)H,] — Tr[p(0)Hp]

« Ergotropy, which is the maximum amount of work that can be extracted from a quantum state by means
of unitary transformations:

e(p) = TrlpHy] — minTr[UpUTH,]
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Quantum phase transitions

- A quantum phase transition (QPT) is an abrupt change, driven by quantum fluctuations, of a many-body
system’s ground state induced by tuning a physical parameter at absolute zero temperature.

« Their effects on quantum systems are difficult to study numerically, as they only become apparent in the
thermodynamic limit, which is challenging to explore using exact diagonalization.

 Studying integrable models enables the consideration of potentially infinite system sizes, leading to a
deeper understanding of the underlying physics.
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Dimerized XY spin chain
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 After diagonalization we can derive the quantum phase diagram of the model

*U—O—0—0—0 §>0
) o oo oo s

« We perform a double quench of the dimerization parameter from an initial value &, to a final value &, + 4;,
then coming back to §,. From now on we define Hgy:: = H(S8y,v) and Hg,, = H(Sy + 81,7)

« The goal is to study the maximum energy stored in the battery as a function of §, with y and §; kept fixed.
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Results

« The study of the stored energy as a function of the charging time reveals the presence of three different time regimes
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Results

« The study of the stored energy as a function of the charging time reveals the presence of three different time regimes
Y = 11, 61= 0.8
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 Short-time regime: peak at §, = 0.2, so when §, + §; = 1 —— Hp,,, is fully dimerized —0 —0 —0
« Long-time regime: peaks at §, = 0.11,5, = 0.2 and §, = 0.3 ——> Hy,, is fully dimerized and critical
« Thermodynamic regime: kinks when Hg,, is critical and plateau between the two QPTs
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Our framework

* Model: quantum systems whose Hamiltonians can be reduced to 2 x 2 free fermion problems.
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« Charging process: sudden quench of one internal parameter of the system.

d; (k, t)
1 7 (k)
EVOLUTION
df* (k) df (k)
BATTERY
0 T Tt

« Energy stored after a sudden quench, assuming the initial state of the quantum battery is a thermal state at temperature T

1 — cos(2wy,T)

AE(D) = ) T Fo(R)Fr (K, T, )
KEBZ

with e, = d4(k) + |d4(k)| and w; = dB (k) + |dP (k)|
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Applications
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Robustness against early-time oscillations

* Is it possible to achieve a more controlled charging process at short times, avoiding temporal oscillations, by
moving from a sudden to a finite-time ramp quench?
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Robustness against noise

« We introduce noise in the ramp

where n(t) is a Gaussian stochastic process with

(n(t)) = 0 and Ornstein-Uhlenbeck correlations

« The ensemble-averaged density matrix p, (t) satisfies

h(t) = h(t) +n(0),

£z _t=t'
M(ON(E)) == 7

an exact noise master equation
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[R. Jafari, A. Langari, S. Eggert, H. Johannesson
Physical Review B 109 (18), L180303 (2024)]
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Robustness against noise
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Conclusions

« We studied the implementation of systems with a large number of quantum degrees of freedom as quantum
batteries by using quench charging protocols.

« The stored energy strongly depends, in a non-analytical fashion in the thermodynamic limit, on the presence
of quantum phase transitions.

« Studying such type of quantum batteries can lead to promising new features such as:

« peaks in the stored energy when the evolution Hamiltonian is critical, both considering as initial state
of the system its ground state or a thermal state;

« formation of plateau regions where the stored energy is not affected by the specific charging
parameters, offering more design control;

« enhanced robustness to external noise considered into the charging process.

R.G. et al, «Controlling Energy Storage Crossing Quantum Phase Transitions in an Integrable Spin Quantum Battery», Phys. Rev. Lett. 133, 197001 (2024)

R.G. et al, «Charging free fermions quantum batteries», Chaos, Solitons & Fractals 196, 116383 (2025)
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