

Quantum Batteries and Quantum Phase Transitions

Riccardo Grazi

University of Genoa, Italy

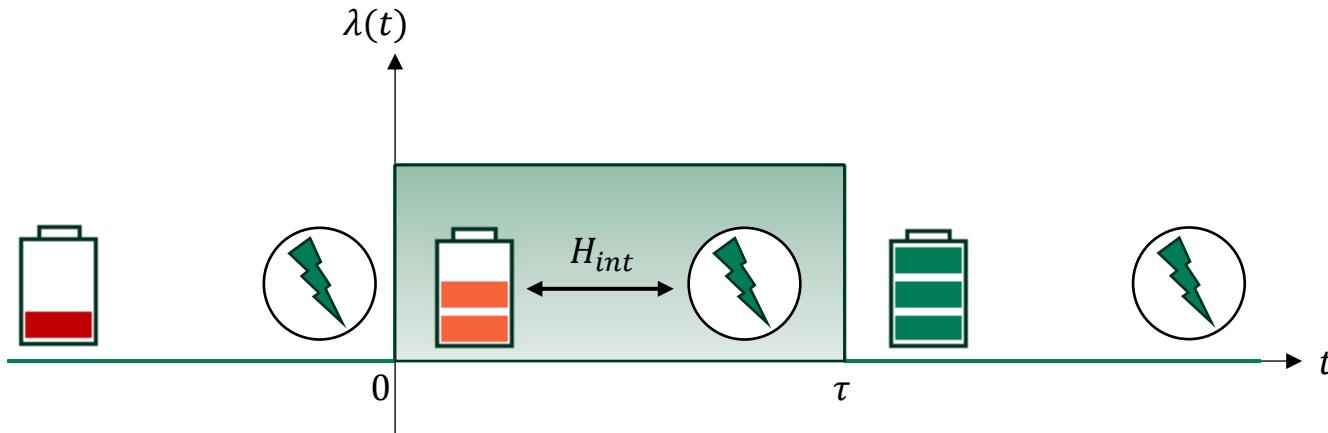
riccardo.grazi@edu.unige.it

Why study quantum batteries?

- The rise of quantum technologies strongly enhanced the interest in studying energetics at the quantum level: quantum thermodynamics now guides how we envision and develop novel devices based on quantum effects.
- The pursuit of efficient energy storage and transfer at the quantum scale has led to the development of **quantum batteries**: devices able to store and release energy on demand exploiting purely quantum features.
[R. Alicki, M. Fannes, Phys. Rev. E 87.4, 042123 (2013)]
- The interest in quantum batteries is **threefold**:
 - they address fundamental questions about quantum energy exchange;
 - they can outperform classical batteries in charging power;
 - they may offer advantages in energy and time efficiency within complex quantum devices.

Double quench protocol

- The Hamiltonian of the full system is given by $H = H_b + H_c + \lambda(t)H_{int}$



- Typical figures of merit to characterize these systems are:
 - Energy stored** in the battery at time τ :

$$\Delta E(\tau) = \text{Tr}[\rho(\tau)H_b] - \text{Tr}[\rho(0)H_b]$$

- Ergotropy**, which is the maximum amount of work that can be extracted from a quantum state by means of unitary transformations:

$$\epsilon(\rho) = \text{Tr}[\rho H_b] - \min_U \text{Tr}[U \rho U^\dagger H_b]$$

Quantum phase transitions

- A **quantum phase transition** (QPT) is an abrupt change, driven by quantum fluctuations, of a many-body system's ground state induced by tuning a physical parameter at absolute zero temperature.
- Their effects on quantum systems are difficult to study numerically, as they only become apparent in the thermodynamic limit, which is challenging to explore using exact diagonalization.
- Studying **integrable models** enables the consideration of potentially infinite system sizes, leading to a deeper understanding of the underlying physics.

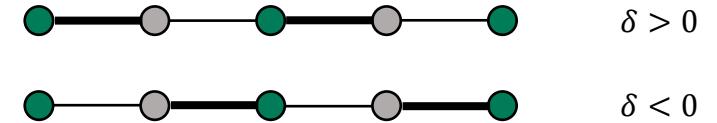
Controlling Energy Storage Crossing Quantum Phase Transitions in an Integrable Spin Quantum Battery

R.Grazi, D.Sacco Shaikh, M.Sassetti, N.Traverso Ziani and D.Ferraro

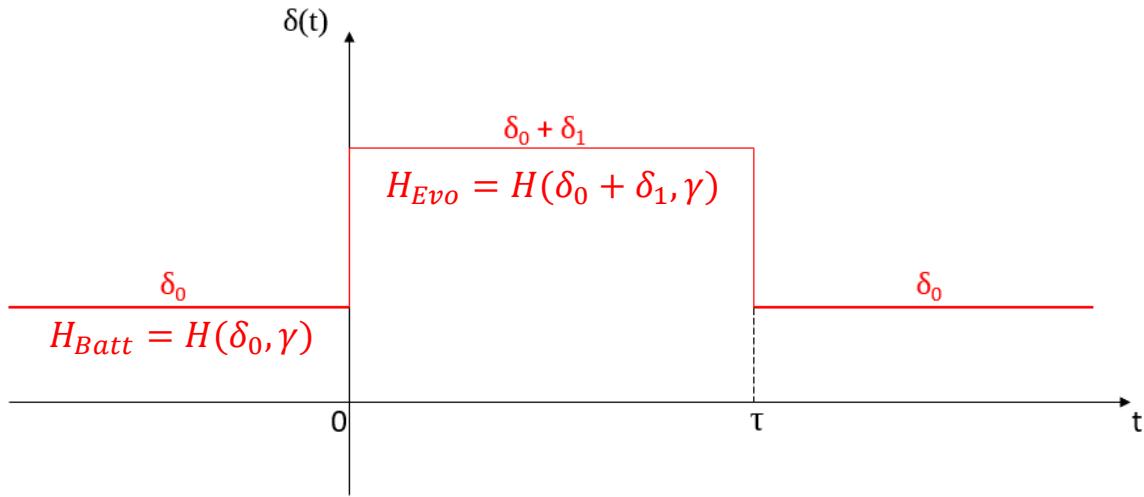
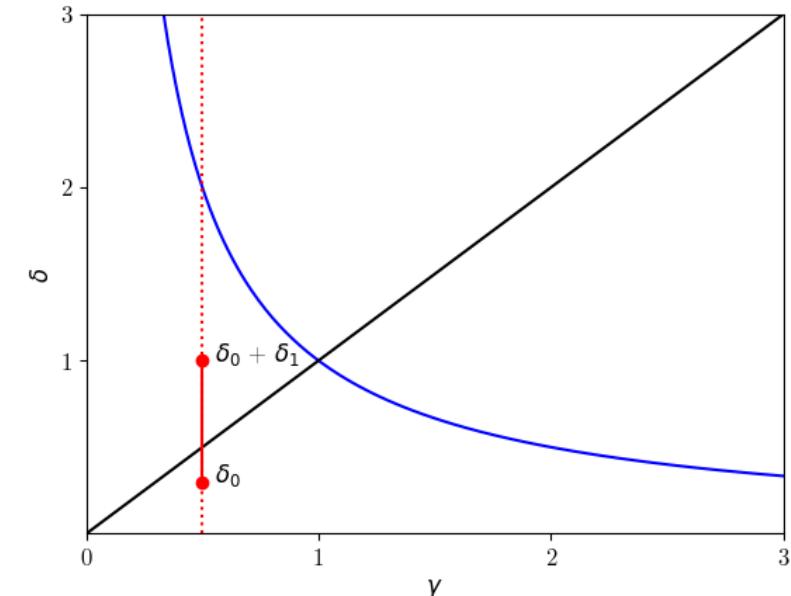
Physical Review Letters 133, 197001 (2024)

Dimerized XY spin chain

$$H(\delta, \gamma) = -J \sum_{j=1}^N \left\{ [1 - (-1)^j \delta] \left[\left(\frac{1+\gamma}{2} \right) \sigma_j^x \sigma_{j+1}^x + \left(\frac{1-\gamma}{2} \right) \sigma_j^y \sigma_{j+1}^y \right] \right\}$$

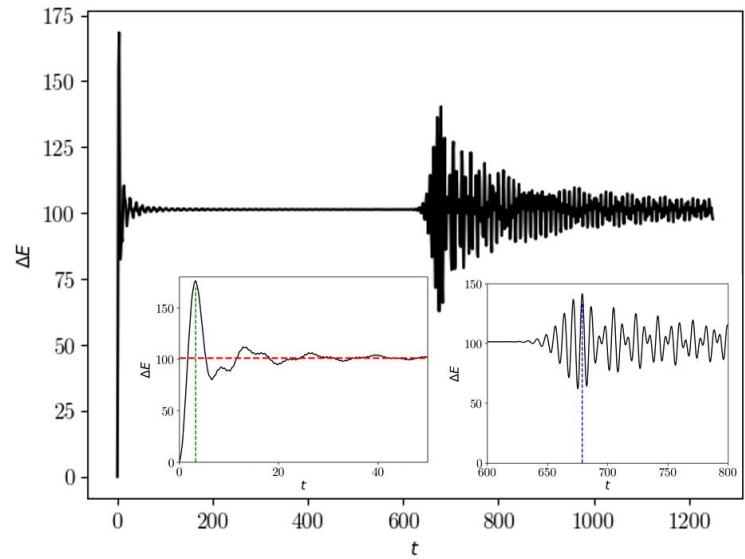


- After diagonalization we can derive the **quantum phase diagram** of the model
- We perform a double quench of the **dimerization parameter** from an initial value δ_0 to a final value $\delta_0 + \delta_1$, then coming back to δ_0 . From now on we define $H_{Batt} = H(\delta_0, \gamma)$ and $H_{Evo} = H(\delta_0 + \delta_1, \gamma)$
- The goal is to study the maximum energy stored in the battery as a function of δ_0 with γ and δ_1 kept fixed.



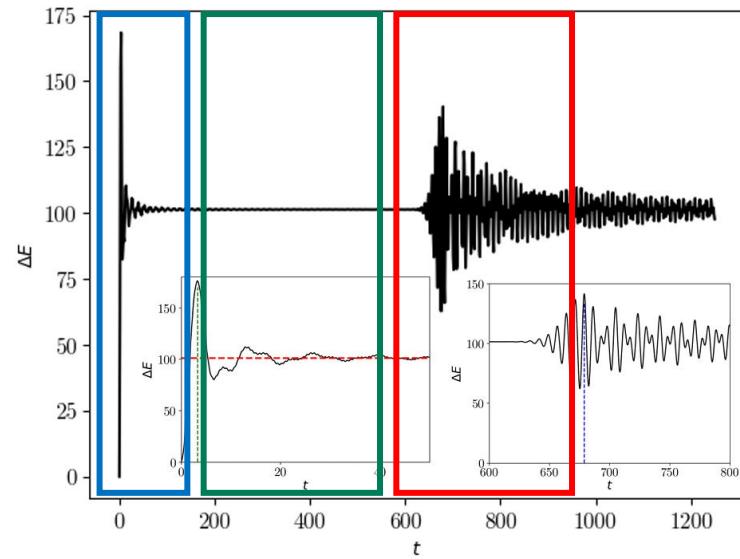
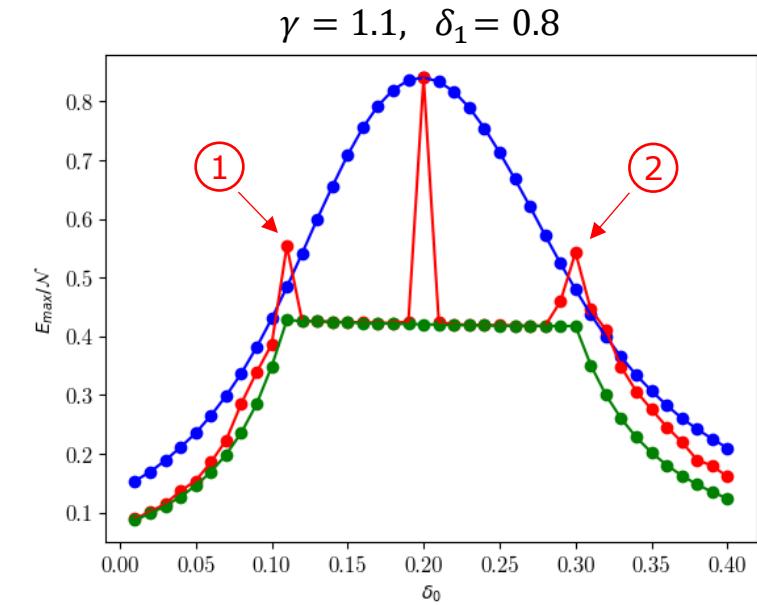
Results

- The study of the stored energy as a function of the charging time reveals the presence of **three different time regimes**

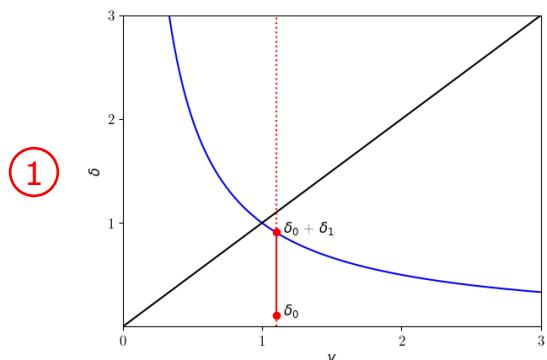
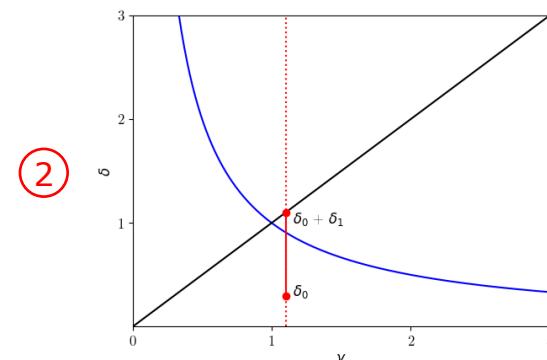


Results

- The study of the stored energy as a function of the charging time reveals the presence of **three different time regimes**



- Short-time regime:** peak at $\delta_0 = 0.2$, so when $\delta_0 + \delta_1 = 1$ $\rightarrow H_{Evo}$ is fully dimerized
- Long-time regime:** peaks at $\delta_0 = 0.11, \delta_0 = 0.2$ and $\delta_0 = 0.3$ $\rightarrow H_{Evo}$ is fully dimerized and critical
- Thermodynamic regime:** kinks when H_{Evo} is critical and plateau between the two QPTs



Charging Free Fermion Quantum Batteries

R.Grazi, F.Cavaliere, M.Sassetti, D.Ferraro and N.Traverso Ziani

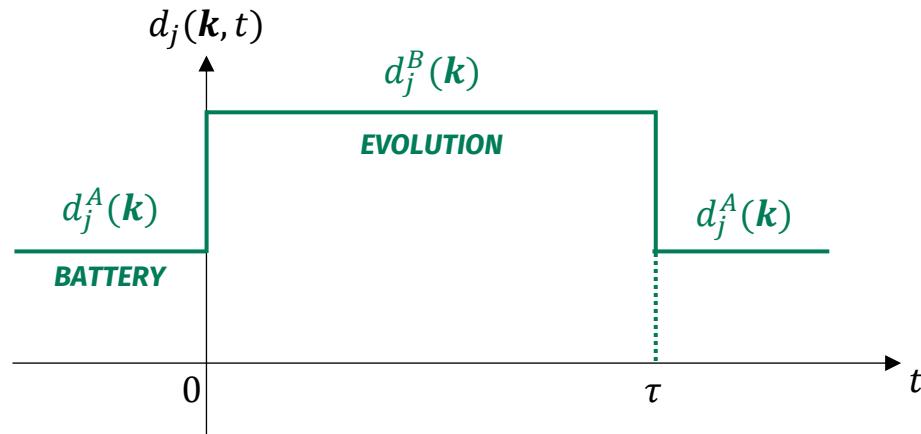
Chaos, Solitons and Fractals 196, 116383 (2025)

Our framework

- **Model:** quantum systems whose Hamiltonians can be reduced to 2×2 free fermion problems.

$$H(t) = \sum_{\mathbf{k} \in BZ} \begin{pmatrix} c_{a,\mathbf{k}}^\dagger & c_{b,\mathbf{k}}^\dagger \end{pmatrix} (d_0(\mathbf{k}, t) \mathbf{I}_{2 \times 2} + \mathbf{d}(\mathbf{k}, t) \cdot \boldsymbol{\sigma}) \begin{pmatrix} c_{a,\mathbf{k}} \\ c_{b,\mathbf{k}} \end{pmatrix} \quad \mid \quad H(t) = \frac{1}{2} \sum_{\mathbf{k} \in BZ} \begin{pmatrix} c_{\mathbf{k}}^\dagger & c_{-\mathbf{k}}^\dagger \end{pmatrix} (Z(\mathbf{k}, t) \sigma_z + X(\mathbf{k}, t) \sigma_x) \begin{pmatrix} c_{\mathbf{k}} \\ c_{-\mathbf{k}} \end{pmatrix}$$

- **Charging process:** sudden quench of one internal parameter of the system.

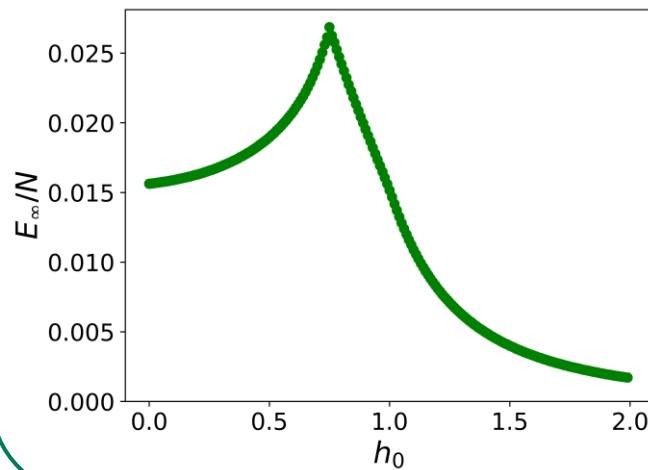


- Energy stored after a sudden quench, assuming the initial state of the quantum battery is a **thermal state** at temperature T

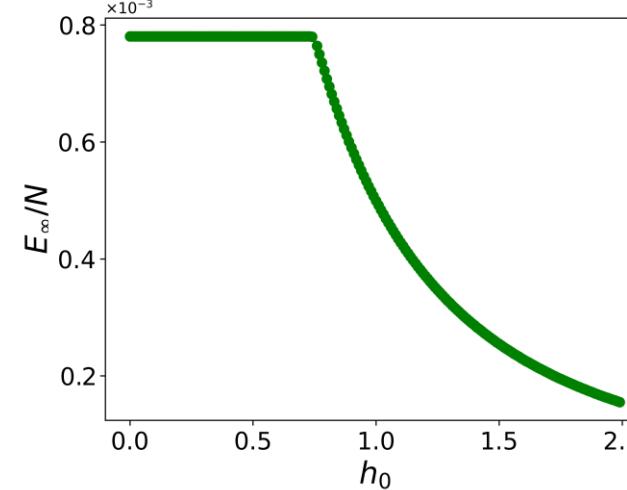
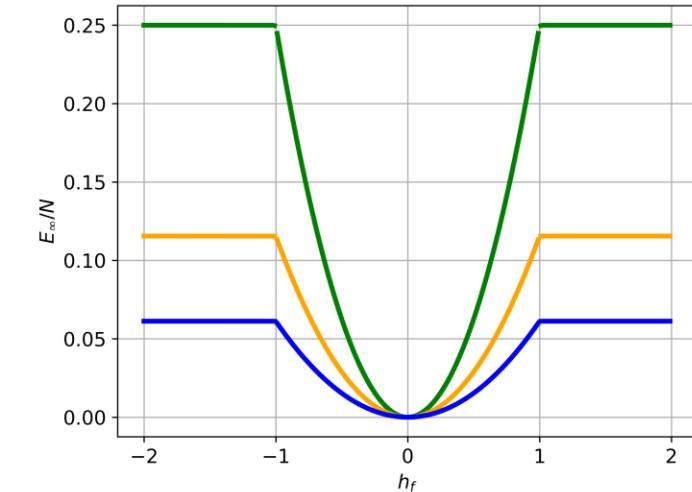
$$\Delta E(\tau) = \sum_{\mathbf{k} \in BZ} \frac{1 - \cos(2\omega_{\mathbf{k}}\tau)}{\epsilon_{\mathbf{k}}\omega_{\mathbf{k}}^2} F_0(\mathbf{k}) F_T(\mathbf{k}, T, \mu)$$

with $\epsilon_{\mathbf{k}} = d_0^A(\mathbf{k}) + |\mathbf{d}^A(\mathbf{k})|$ and $\omega_{\mathbf{k}} = d_0^B(\mathbf{k}) + |\mathbf{d}^B(\mathbf{k})|$

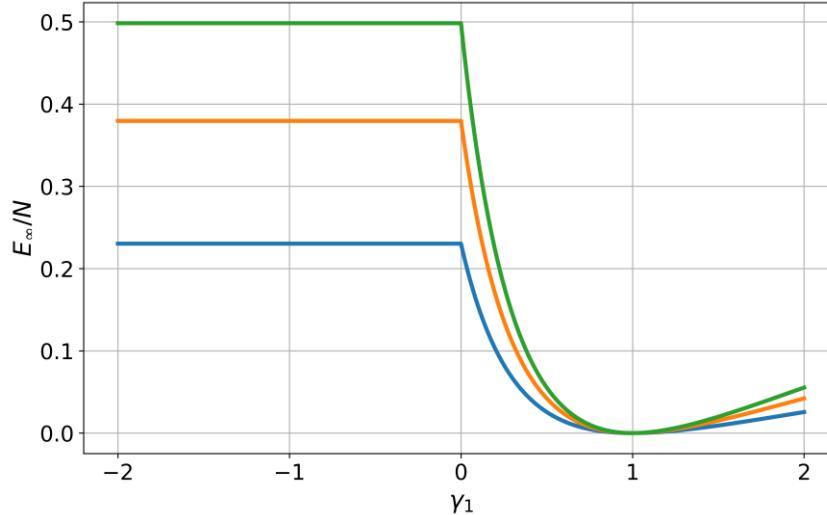
Applications



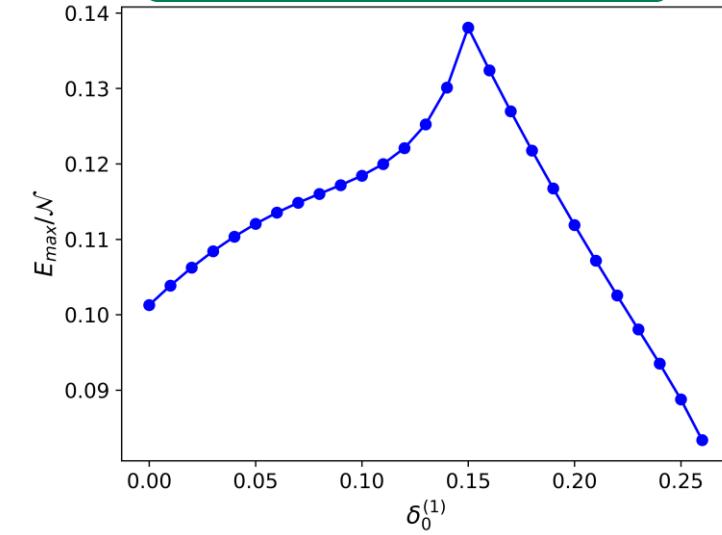
ISING CHAIN



XY CHAIN



SSH CHAIN



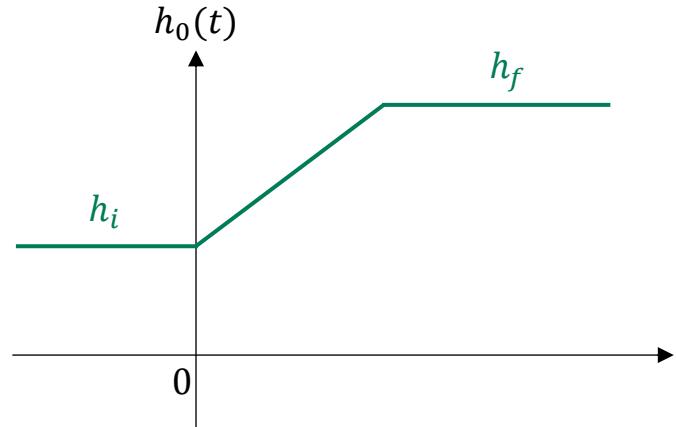
Energy and ergotropy robustness under noisy finite-time charging in an Ising quantum battery

R.Grazi, H.Johannesson, D.Ferraro and N.Traverso Ziani

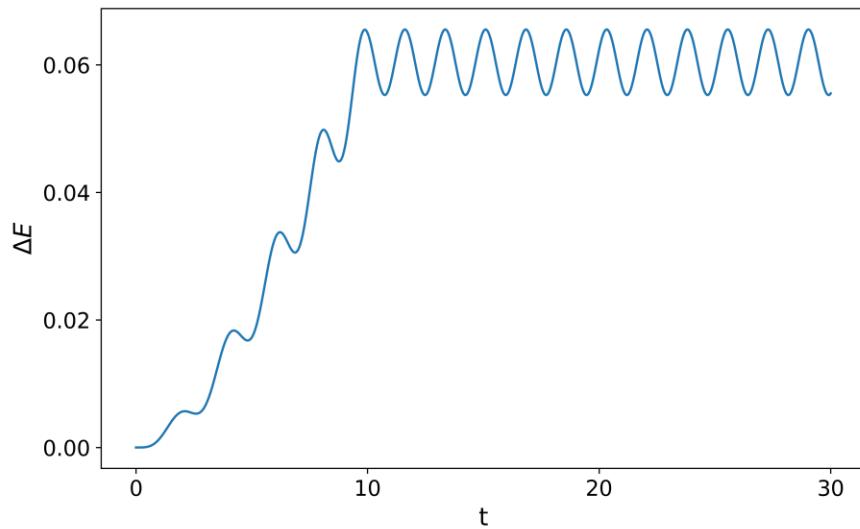
Work in progress...

Robustness against early-time oscillations

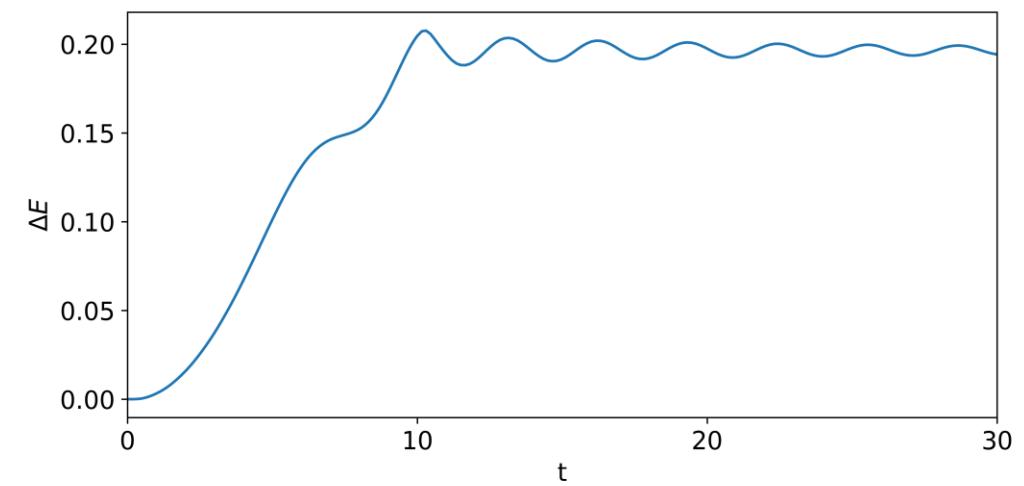
- Is it possible to achieve a more controlled charging process at short times, avoiding temporal oscillations, by moving from a sudden to a **finite-time ramp quench**?



Single-qubit system



Ising chain



Robustness against noise

- We introduce **noise** in the ramp

$$h(t) \rightarrow h(t) + \eta(t),$$

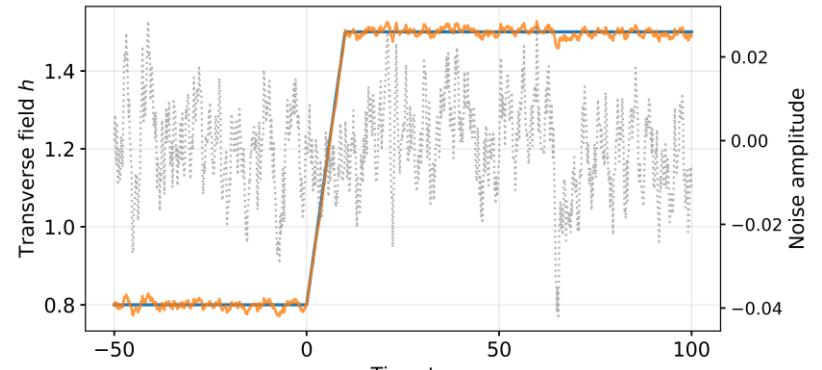
where $\eta(t)$ is a Gaussian stochastic process with $\langle \eta(t) \rangle = 0$ and **Ornstein-Uhlenbeck correlations**

$$\langle \eta(t)\eta(t') \rangle = \frac{\xi^2}{2\tau} e^{-\frac{|t-t'|}{\tau}}$$

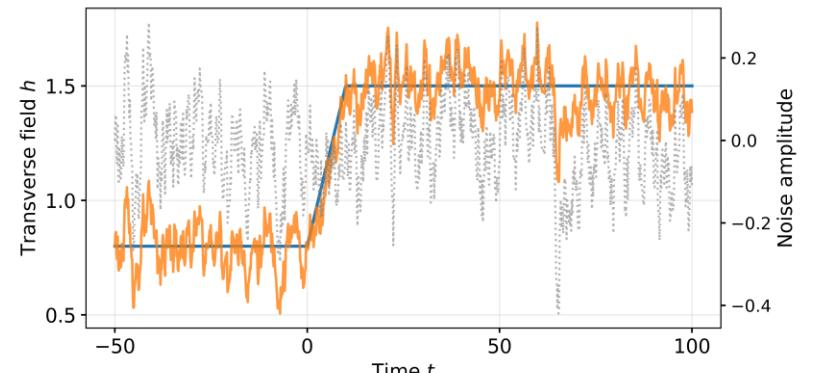
- The ensemble-averaged density matrix $\rho_k(t)$ satisfies an exact **noise master equation**

[R. Jafari, A. Langari, S. Eggert, H. Johannesson
Physical Review B 109 (18), L180303 (2024)]

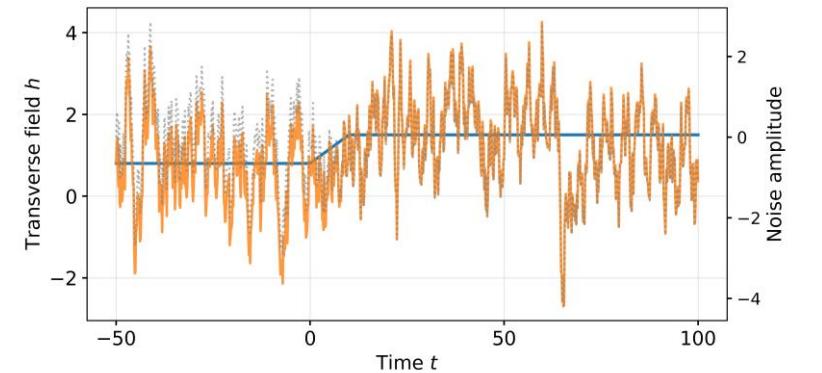
$\xi = 0.01$



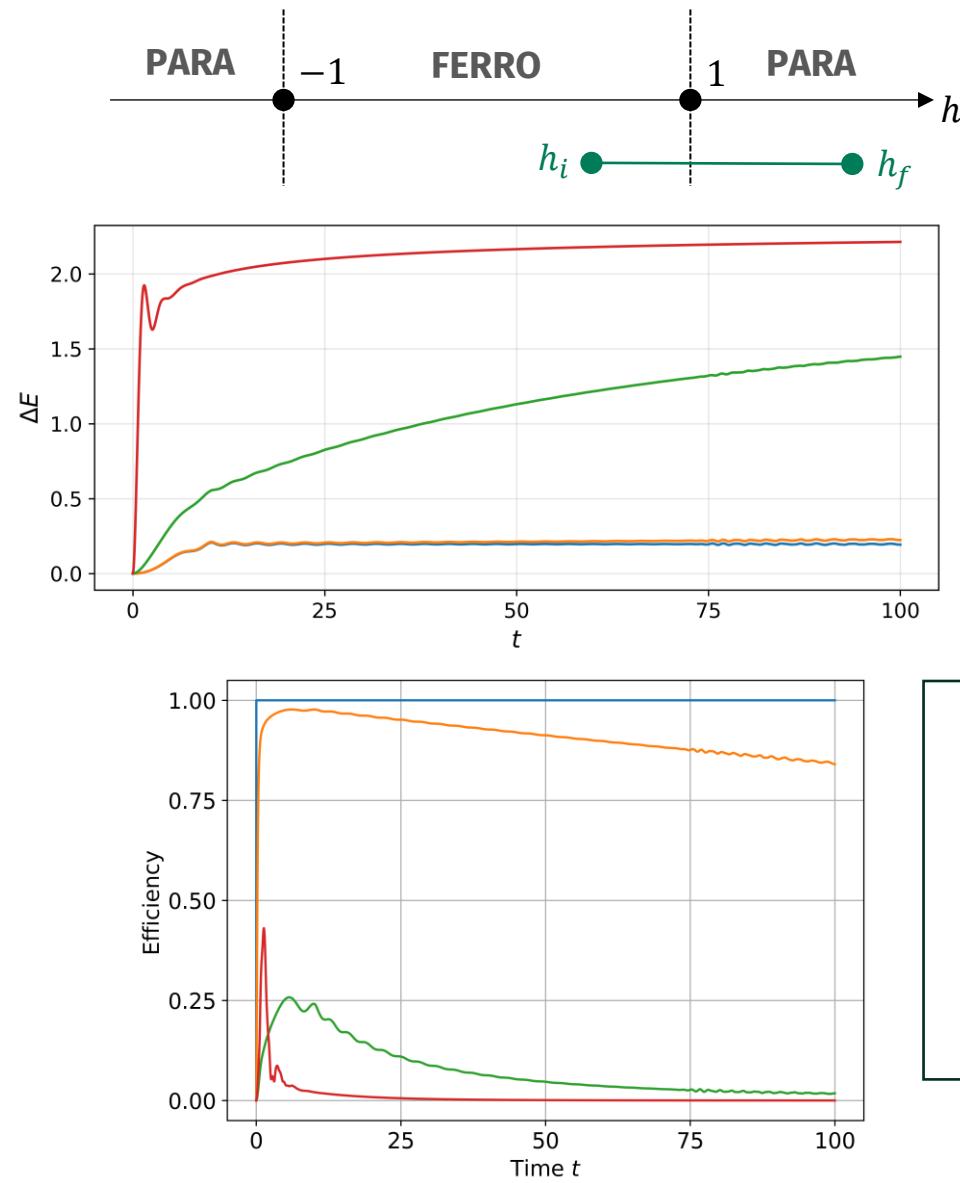
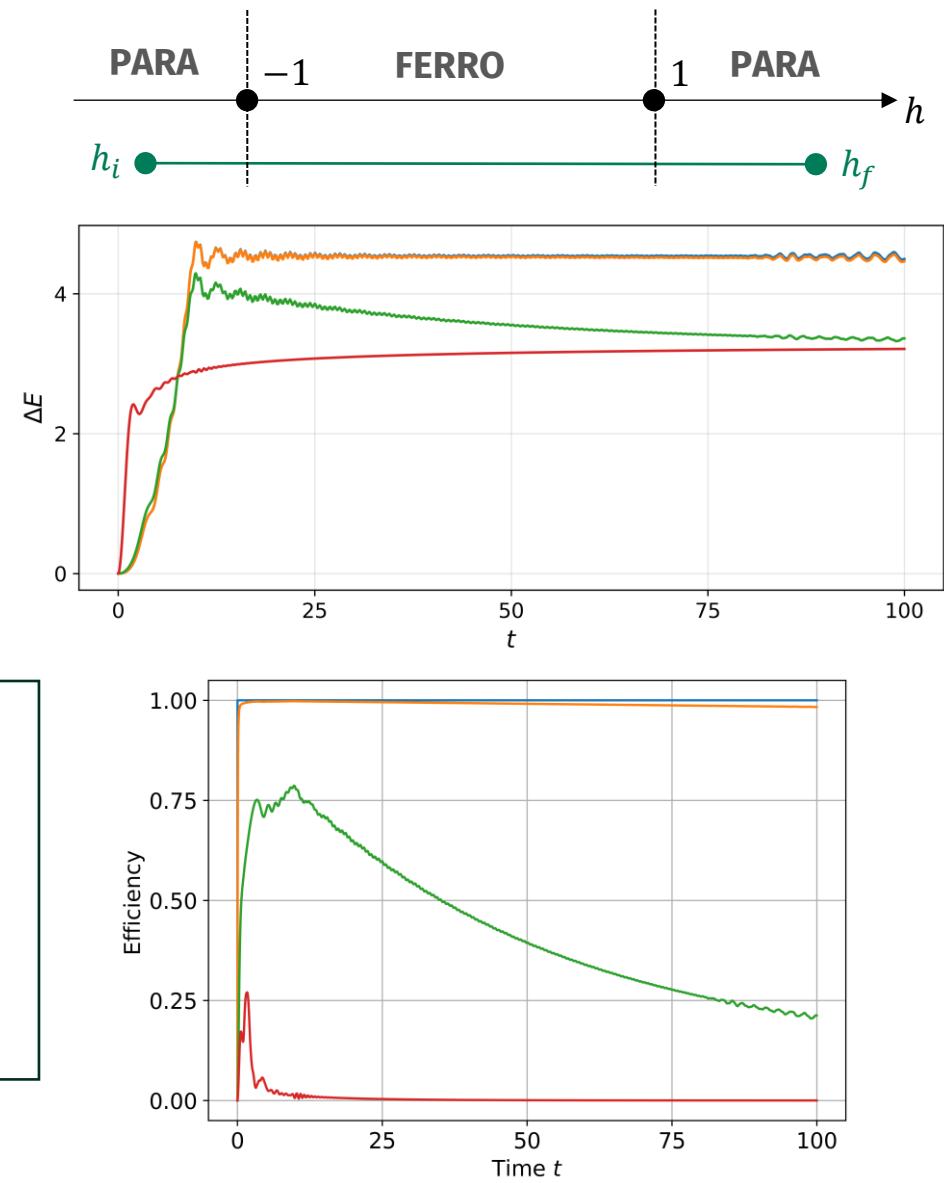
$\xi = 0.1$



$\xi = 1$



Robustness against noise



Conclusions

- We studied the implementation of systems with a large number of quantum degrees of freedom as quantum batteries by using quench charging protocols.
- The stored energy strongly depends, in a non-analytical fashion in the thermodynamic limit, on the presence of quantum phase transitions.
- Studying such type of quantum batteries can lead to promising new features such as:
 - peaks in the stored energy when the evolution Hamiltonian is critical, both considering as initial state of the system its ground state or a thermal state;
 - formation of plateau regions where the stored energy is not affected by the specific charging parameters, offering more design control;
 - enhanced robustness to external noise considered into the charging process.

R.G. et al, «Controlling Energy Storage Crossing Quantum Phase Transitions in an Integrable Spin Quantum Battery», *Phys. Rev. Lett.* 133, 197001 (2024)

R.G. et al, «Charging free fermions quantum batteries», *Chaos, Solitons & Fractals* 196, 116383 (2025)

UniGe
—
DIFI