



---

# **Towards Continuous-Variable Quantum Neural Networks for Biomedical Imaging**

---

## **Authors**

**M. Sc. Daniel Alejandro Lopez**

Dr. Oscar Montiel

Dr. Miguel Angel Lopez

Dr. Oscar Castillo

# Content

## 1 Introduction

## 2 Related work

## 3 Methodology

## 4 Experiments and results

## 5 Conclusions and future work

---

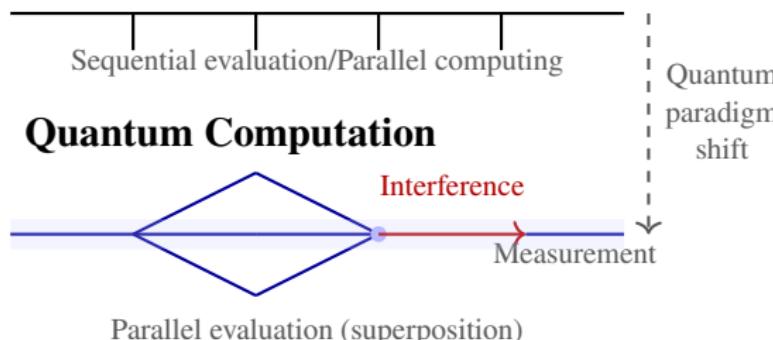
# 1.- Introduction

---

# AI for Medical Imaging: Progress and Limitations

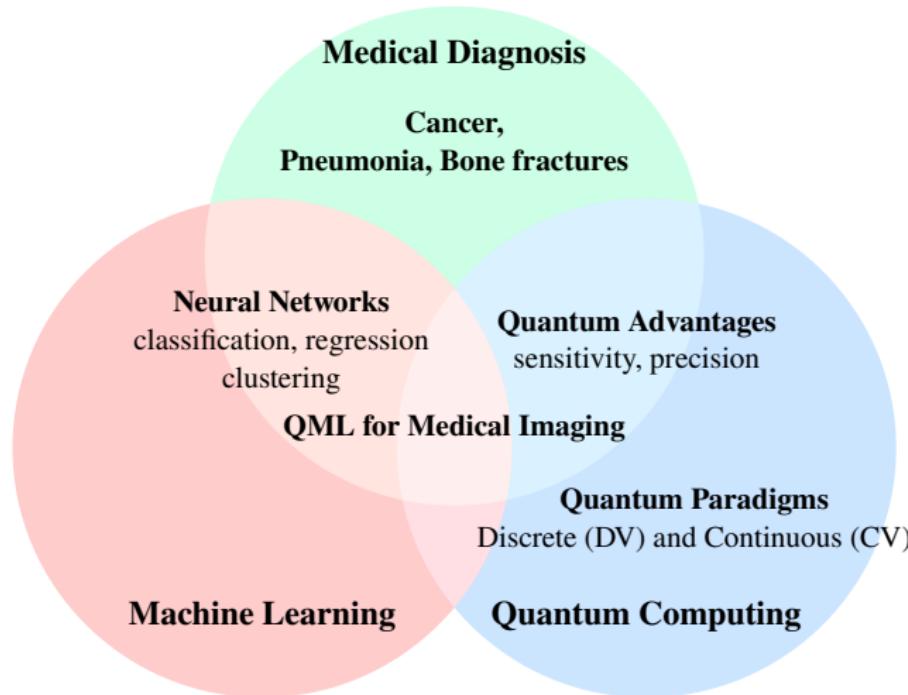
- ▶ AI, has revolutionized medical image analysis [1–3].
- ▶ However, these models rely on **large datasets and heavy computation**, limiting their scalability and interpretability [4].
- ▶ **Quantum computing** emerges a new paradigm to process information more efficiently [5].

## Classical Computation



**Figure 1:** Computation paradigm features and shift.

# Quantum AI: Paradigms and Gaps



**Figure 2:** Intersection of disciplines highlighting the research gap in quantum-enhanced medical diagnosis.

# Our proposal

- ▶ Explore **CV-QNNs** for medical image classification.
- ▶ Use **Gaussian gates** ( $D, R, S, BS$ ) to emulate convolutional behavior.
- ▶ Evaluate model performance, robustness, and expressiveness against classical and DV quantum counterparts.

**Datasets:** BreastMNIST, OrganAMNIST, PneumoniaMNIST

**Evaluation:** Accuracy, F1-score, AUROC, noise robustness, interpretability.

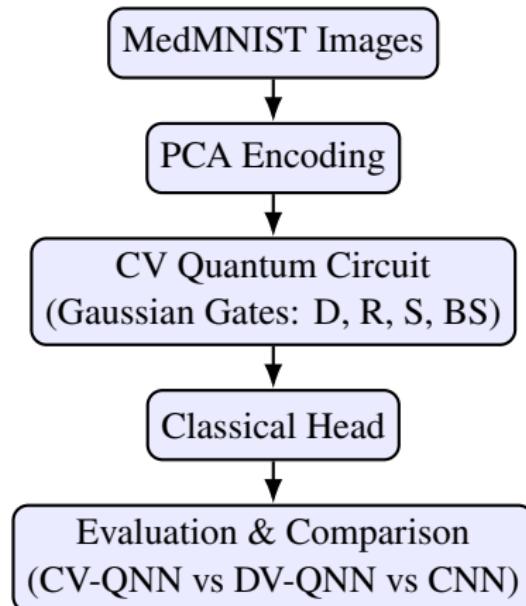


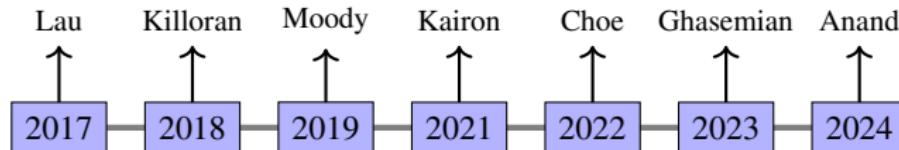
Figure 3: Methodology of the proposed work.

---

## 2.- Related work

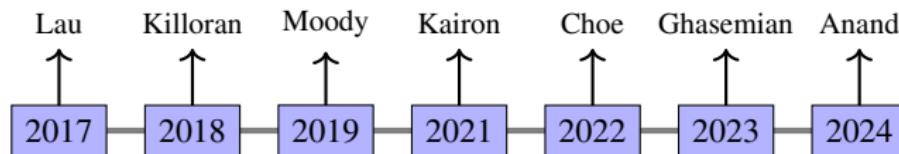
---

# State-of-the-art of Continuous-Variable QML



**Figure 4:** Recent state-of-the-art of Continuous-Variable QML.

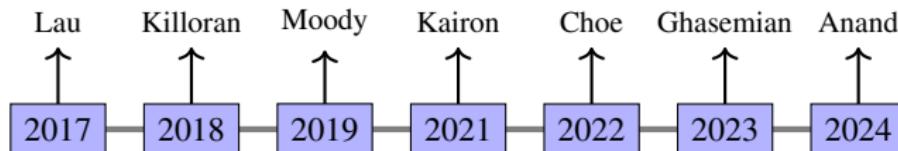
# State-of-the-art of Continuous-Variable QML



**Figure 4:** Recent state-of-the-art of Continuous-Variable QML.

- ▶ **2017:** Subroutines are generalized for infinite-dimensional systems [6].

# State-of-the-art of Continuous-Variable QML



**Figure 4:** Recent state-of-the-art of Continuous-Variable QML.

- ▶ **2017:** Subroutines are generalized for infinite-dimensional systems [6].
- ▶ **2018:** First CV neural networks for CV quantum computers [7].

# State-of-the-art of Continuous-Variable QML

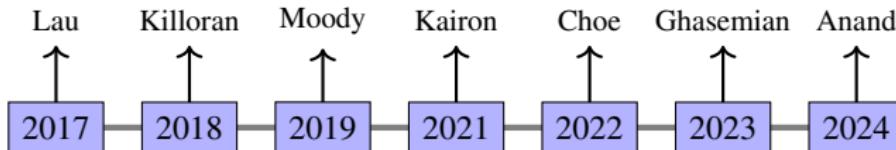


Figure 4: Recent state-of-the-art of Continuous-Variable QML.

- ▶ **2017:** Subroutines are generalized for infinite-dimensional systems [6].
- ▶ **2018:** First CV neural networks for CV quantum computers [7].
- ▶ **2019:** ML and optimization with variable parameters for short-depth photonic circuits [8].

# State-of-the-art of Continuous-Variable QML

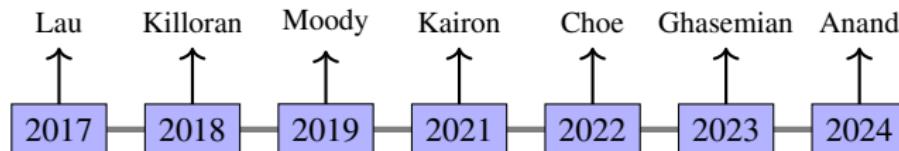
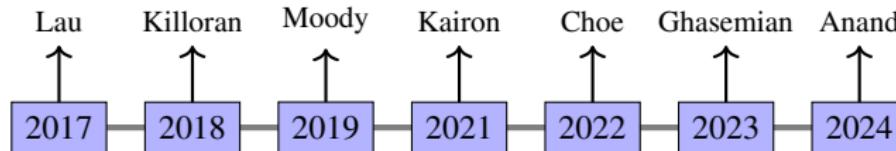


Figure 4: Recent state-of-the-art of Continuous-Variable QML.

- ▶ **2017:** Subroutines are generalized for infinite-dimensional systems [6].
- ▶ **2018:** First CV neural networks for CV quantum computers [7].
- ▶ **2019:** ML and optimization with variable parameters for short-depth photonic circuits [8].
- ▶ **2021:** COVID-19 diagnosis through CV QNNs [9].

# State-of-the-art of Continuous-Variable QML



**Figure 4:** Recent state-of-the-art of Continuous-Variable QML.

- ▶ **2017:** Subroutines are generalized for infinite-dimensional systems [6].
- ▶ **2018:** First CV neural networks for CV quantum computers [7].
- ▶ **2019:** ML and optimization with variable parameters for short-depth photonic circuits [8].
- ▶ **2021:** COVID-19 diagnosis through CV QNNs [9].
- ▶ **2022:** MNIST classification via CV QNN architecture [10].

# State-of-the-art of Continuous-Variable QML

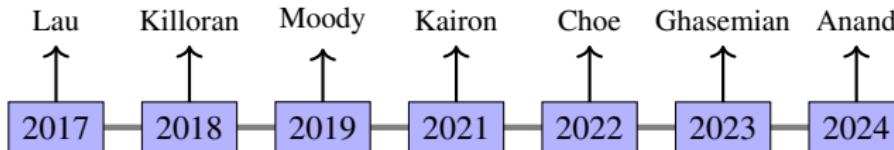
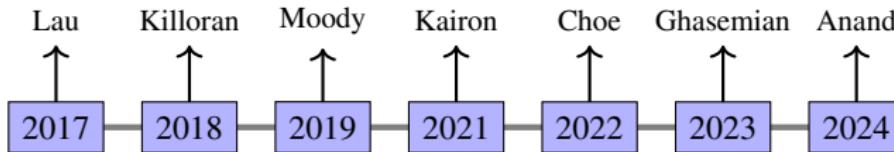


Figure 4: Recent state-of-the-art of Continuous-Variable QML.

- ▶ **2017:** Subroutines are generalized for infinite-dimensional systems [6].
- ▶ **2018:** First CV neural networks for CV quantum computers [7].
- ▶ **2019:** ML and optimization with variable parameters for short-depth photonic circuits [8].
- ▶ **2021:** COVID-19 diagnosis through CV QNNs [9].
- ▶ **2022:** MNIST classification via CV QNN architecture [10].
- ▶ **2023:** Neural network implementations on photonic computers to encode spectral amplitude information [11].

# State-of-the-art of Continuous-Variable QML



**Figure 4:** Recent state-of-the-art of Continuous-Variable QML.

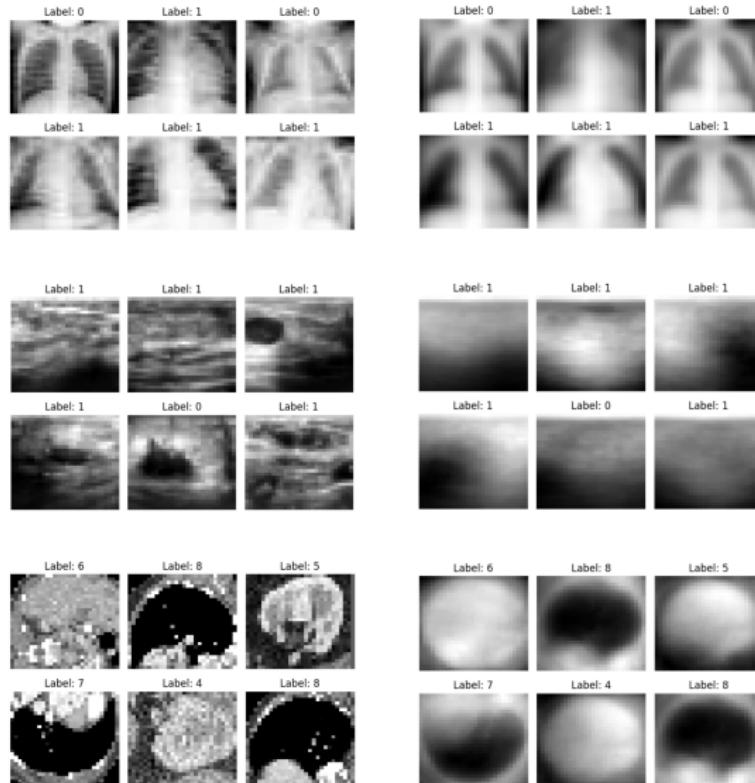
- ▶ **2017:** Subroutines are generalized for infinite-dimensional systems [6].
- ▶ **2018:** First CV neural networks for CV quantum computers [7].
- ▶ **2019:** ML and optimization with variable parameters for short-depth photonic circuits [8].
- ▶ **2021:** COVID-19 diagnosis through CV QNNs [9].
- ▶ **2022:** MNIST classification via CV QNN architecture [10].
- ▶ **2023:** Neural network implementations on photonic computers to encode spectral amplitude information [11].
- ▶ **2024:** Time-series forecasting comparison between quantum CV, DV and classical approaches [12].

---

## 3.- Methodology

---

# Data preparation



**Figure 5:** Comparison between original and PCA-reconstructed images.

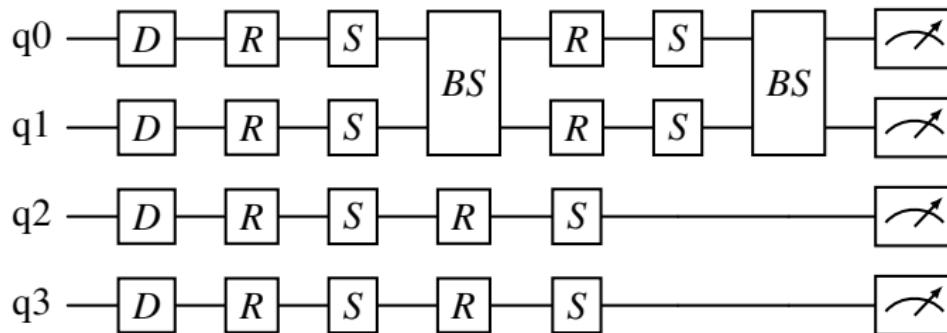
# Data dimensionality reduction

**Table 1:** Dimensionality reduction using PCA across MedMNIST datasets.

| <b>Dataset</b> | <b>Task</b> | <b>Dimensions</b> | <b>No. Samples</b> | <b>PCA</b> | <b>Var.</b> |
|----------------|-------------|-------------------|--------------------|------------|-------------|
| Breast         | Binary      | (28, 28, 1)       | 546                | 4          | ~60%        |
| Organ          | Multiclass  | (28, 28, 1)       | 10368              | 4          | ~48%        |
| Pneumonia      | Binary      | (28, 28, 1)       | 4708               | 4          | ~60%        |

# Continuous-Variable quantum neural network

# Continuous-Variable quantum neural network

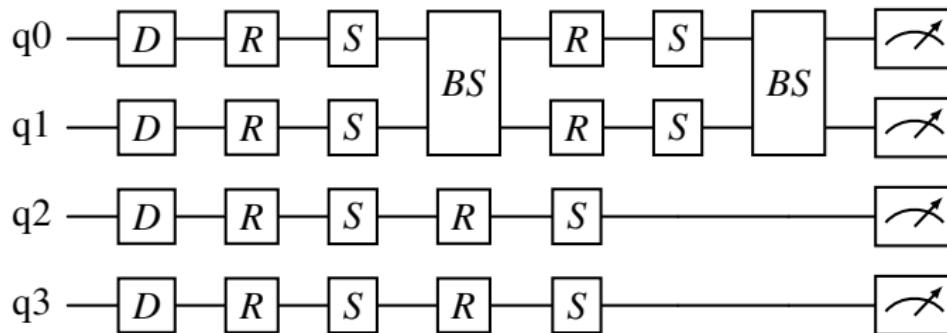


**Figure 6:** The proposed 4-mode Continuous-Variable (CV) quantum circuit.

## Displacement gate

$$D(\alpha) = \exp(\alpha \hat{a}^\dagger - \alpha \hat{a}), \quad (1)$$

# Continuous-Variable quantum neural network

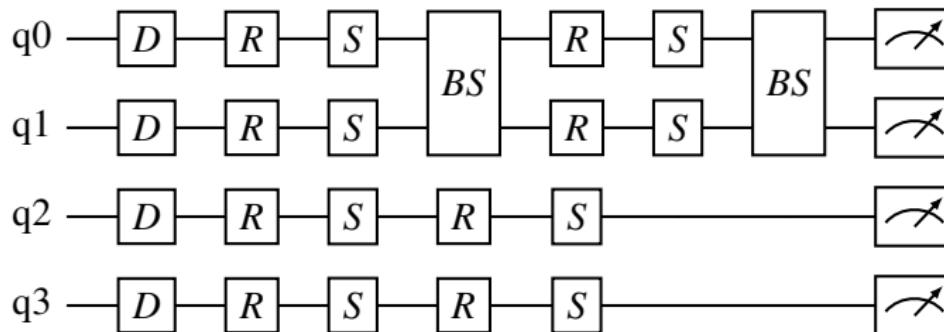


**Figure 6:** The proposed 4-mode Continuous-Variable (CV) quantum circuit.

## Rotation gate

$$R(\phi) = \exp(i\phi \hat{a}^\dagger \hat{a}), \quad (2)$$

# Continuous-Variable quantum neural network

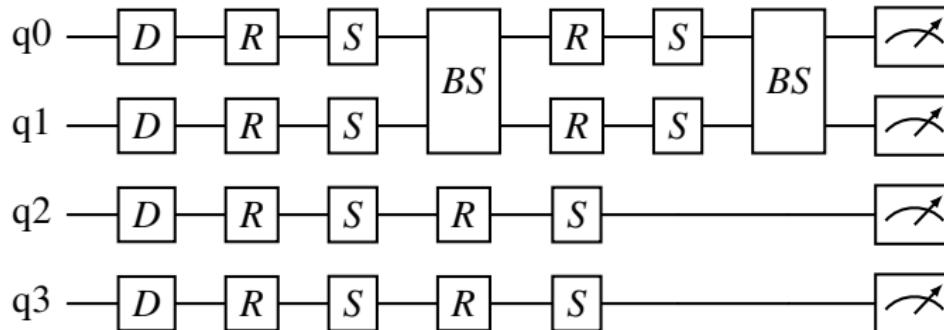


**Figure 6:** The proposed 4-mode Continuous-Variable (CV) quantum circuit.

## Squeezing gate

$$S(r) = \exp\left[\frac{1}{2}r\left(\hat{a}^2 - (\hat{a}^\dagger)^2\right)\right], \quad (3)$$

# Continuous-Variable quantum neural network

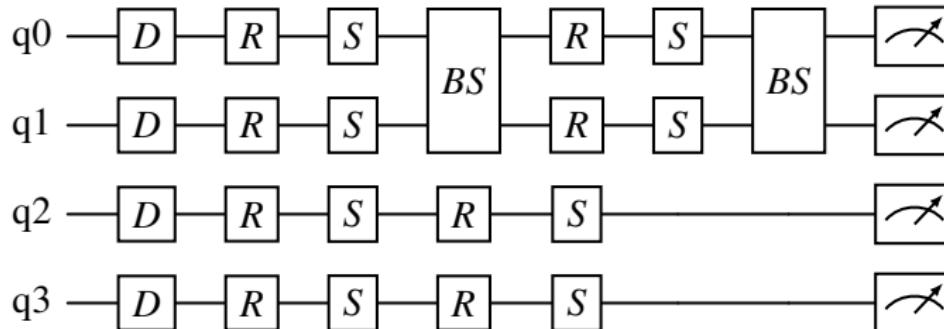


**Figure 6:** The proposed 4-mode Continuous-Variable (CV) quantum circuit.

## Beamsplitter gate

$$BS(\theta, \phi) = \exp\left[\theta\left(e^{i\phi}\hat{a}_1^\dagger\hat{a}_2 - e^{-i\phi}\hat{a}_1\hat{a}_2^\dagger\right)\right], \quad (4)$$

# Continuous-Variable quantum neural network

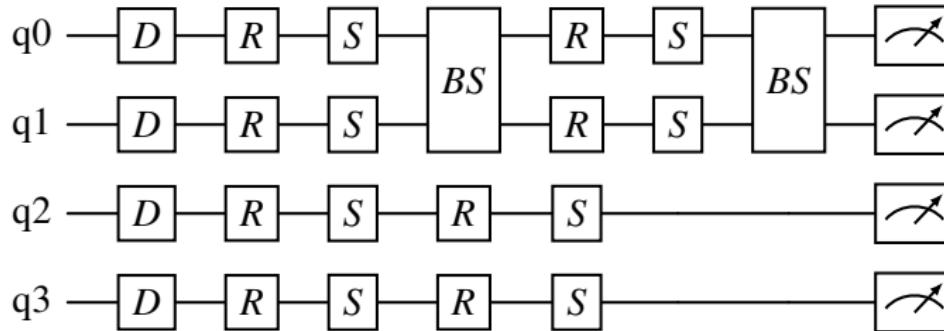


**Figure 6:** The proposed 4-mode Continuous-Variable (CV) quantum circuit.

## Measurement on position quadratures

$$\mathbf{y} = [\langle \hat{X}_1 \rangle, \langle \hat{X}_2 \rangle, \dots, \langle \hat{X}_n \rangle]. \quad (5)$$

# Continuous-Variable quantum neural network

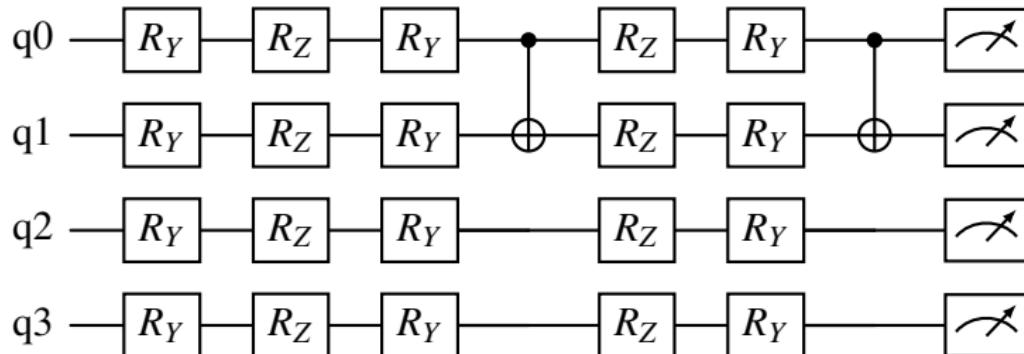


**Figure 6:** The proposed 4-mode Continuous-Variable (CV) quantum circuit.

| Component        | Formula               | Parameters | Description          |
|------------------|-----------------------|------------|----------------------|
| Quantum CV Layer | $2 \times 4 \times 4$ | 32         | $(D, R, S, BS)$      |
| Classical Head   | $4 \times 2 + 2$      | 10         | Linear layer mapping |
| <b>Total</b>     | –                     | <b>42</b>  | Trainable parameters |

# Discrete-Variable quantum neural network

# Discrete-Variable quantum neural network

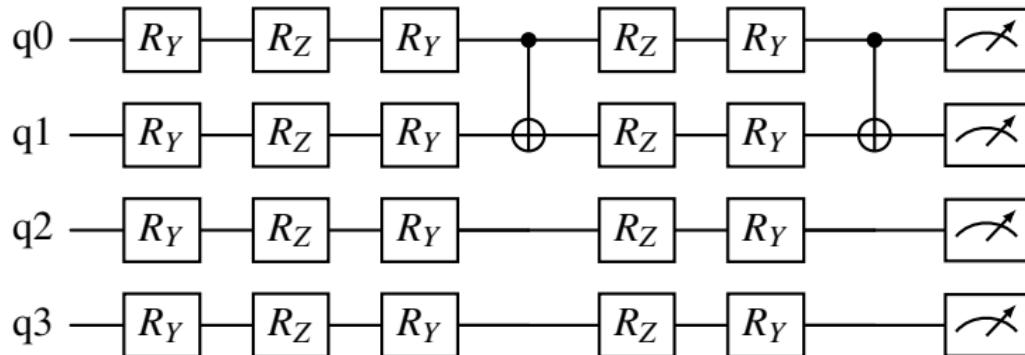


**Figure 7:** The proposed 4-qubit DV quantum circuit.

## Rotation on y-axis gate

$$R_y(\phi) = e^{-i\phi\sigma_y/2} = \begin{bmatrix} \cos(\phi/2) & -\sin(\phi/2) \\ \sin(\phi/2) & \cos(\phi/2) \end{bmatrix}, \quad (6)$$

# Discrete-Variable quantum neural network



**Figure 7:** The proposed 4-qubit DV quantum circuit.

## Rotation on z-axis gate

$$R_z(\phi) = e^{-i\phi\sigma_z/2} = \begin{bmatrix} e^{-i\phi/2} & 0 \\ 0 & e^{i\phi/2} \end{bmatrix}. \quad (7)$$

# Discrete-Variable quantum neural network

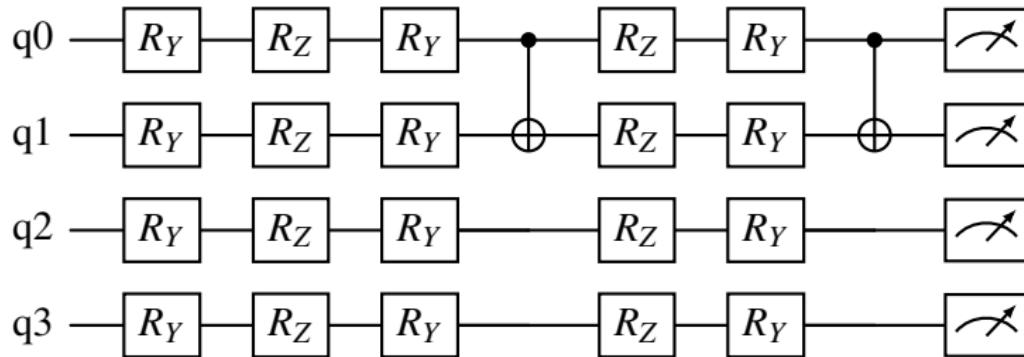
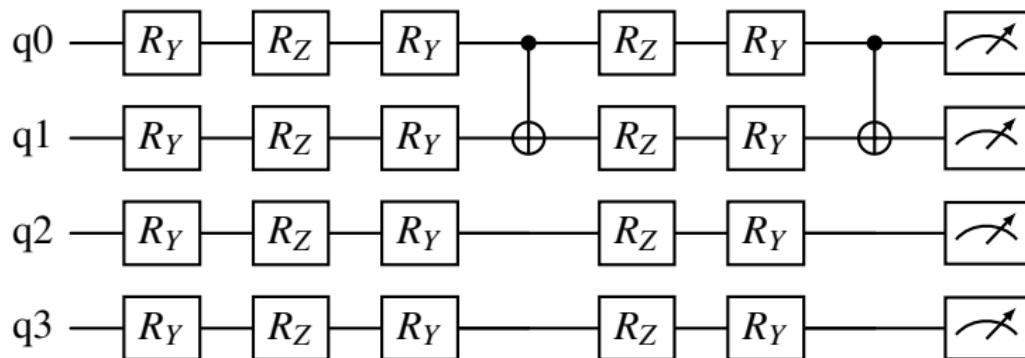


Figure 7: The proposed 4-qubit DV quantum circuit.

## Controlled NOT gate

$$\text{CNOT} = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}. \quad (8)$$

# Discrete-Variable quantum neural network

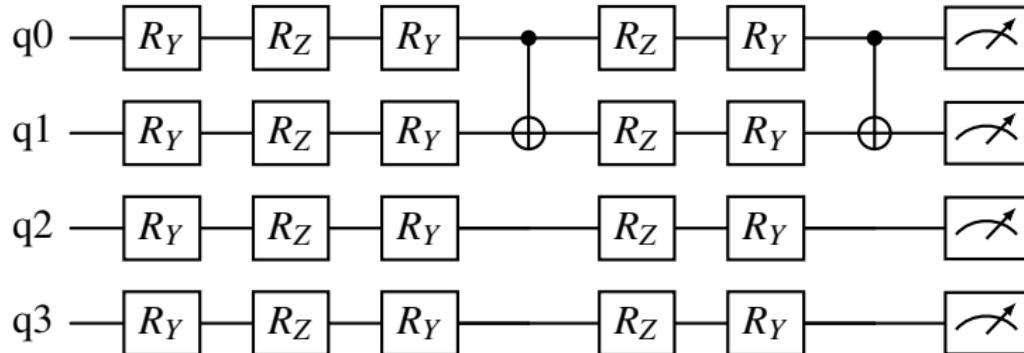


**Figure 7:** The proposed 4-qubit DV quantum circuit.

## Measurement along the z-axis

$$\text{Measurement} = \langle \psi | \sigma_z | \psi \rangle, \quad (9)$$

# Discrete-Variable quantum neural network



**Figure 7:** The proposed 4-qubit DV quantum circuit.

| Component        | Formula               | Parameters | Description            |
|------------------|-----------------------|------------|------------------------|
| Quantum DV Layer | $2 \times 4 \times 4$ | 32         | $(R_Y, R_Z, R_Y, R_Z)$ |
| Classical Head   | $4 \times 2 + 2$      | 10         | Linear layer mapping   |
| <b>Total</b>     | –                     | <b>42</b>  | Trainable parameters   |

# Classification Metrics and Confusion Matrix

## Classification Metrics

$$P = \frac{TP}{TP + FP},$$

$$R = \frac{TP}{TP + FN},$$

$$ACC = \frac{TP + TN}{TP + TN + FP + FN},$$

$$F1 = 2 \left( \frac{P \times R}{P + R} \right). \quad (10)$$

*P*: Precision,

*R*: Recall,

*ACC*: Accuracy,

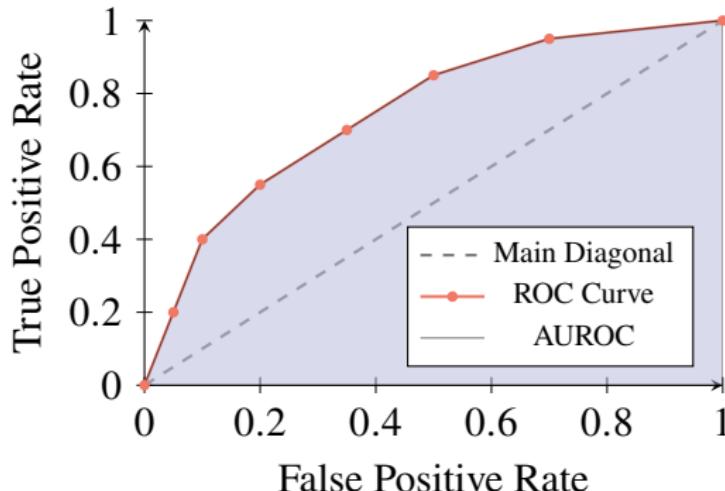
*F1*: *F1*-score.

## Confusion Matrix (Class B)

|            |         | Predicted Class |         |         |         |
|------------|---------|-----------------|---------|---------|---------|
|            |         | Class A         | Class B | Class C | Class D |
| True Class | Class A | TN              | FP      | TN      | TN      |
|            | Class B | FN              | TP      | FN      | FN      |
|            | Class C | TN              | FP      | TN      | TN      |
|            | Class D | TN              | FP      | TN      | TN      |

Figure 8: Multiclass confusion matrix for class B.

# Area under the characteristic operating curve



**Figure 9:** Area under Receiver Operating Characteristic (ROC) curve.

$$AUROC(\sigma) = \int_a^b TPR(\sigma) d(FPR(\sigma)). \quad (11)$$

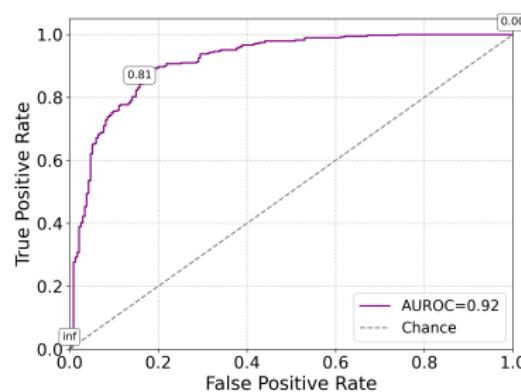
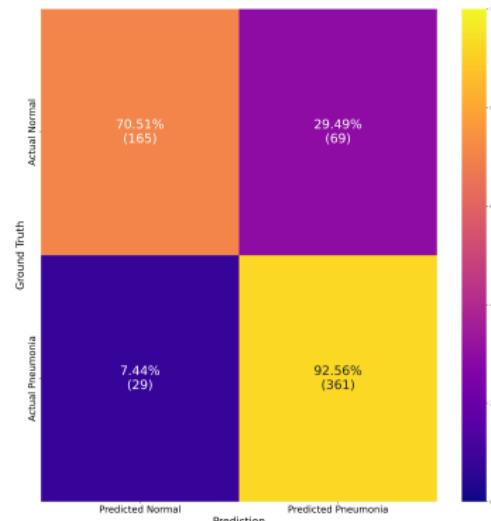
---

## 4.- Experiments and results

---

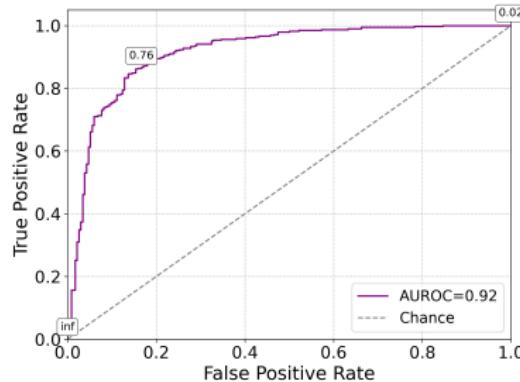
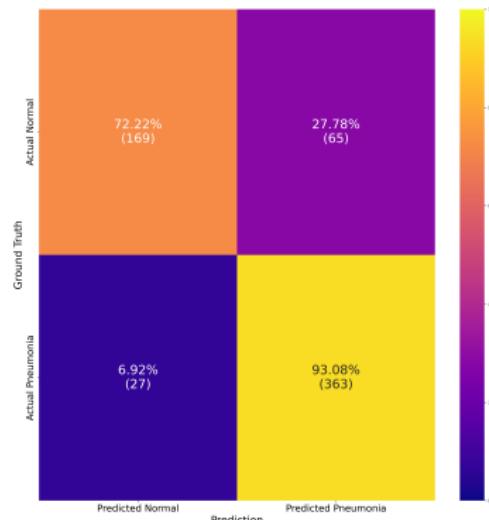
# Classification performance on PneumoniaMNIST

# Classification performance on PneumoniaMNIST



**Figure 10:** Results for CV QNN on PneumoniaMNIST dataset.

# Classification performance on PneumoniaMNIST



**Figure 11:** Results for DV QNN on PneumoniaMNIST dataset.

# Classification performance on PneumoniaMNIST

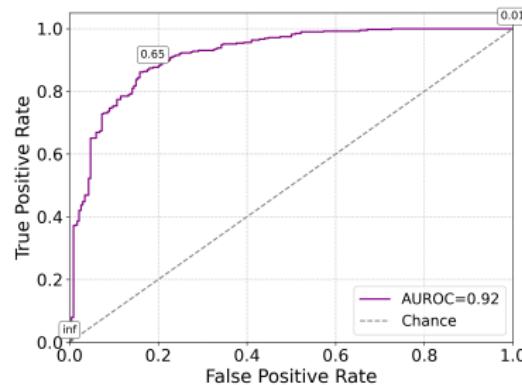
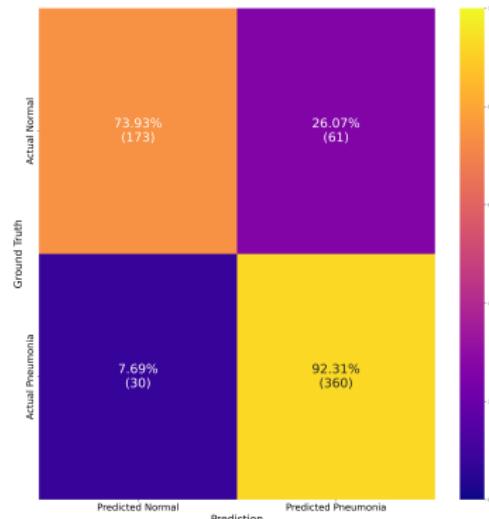


Figure 12: Results for classical NN on PneumoniaMNIST dataset.

# Classification performance on OrganAMNIST

# Classification performance on OrganAMNIST

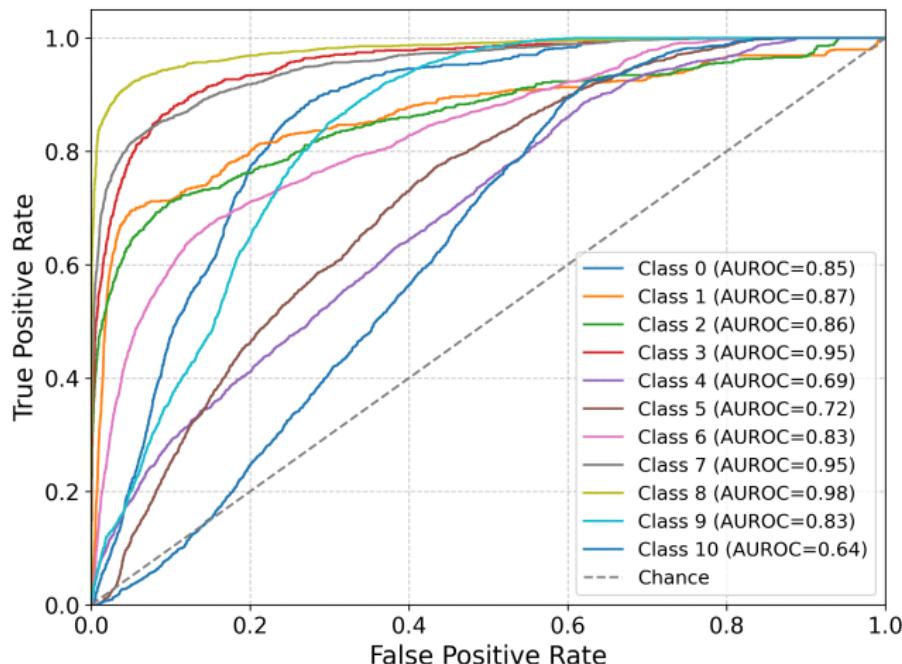


Figure 13: AUROC of CV QNN for OrganAMNIST dataset.

# Classification performance on OrganAMNIST

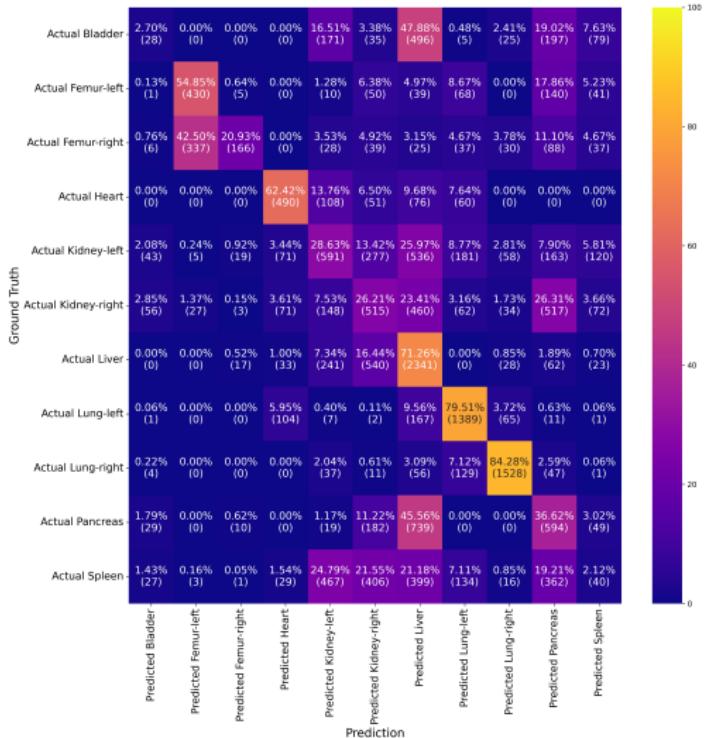


Figure 14: Confusion matrix of CV QNN for OrganAMNIST dataset.

# Classification performance on OrganAMNIST

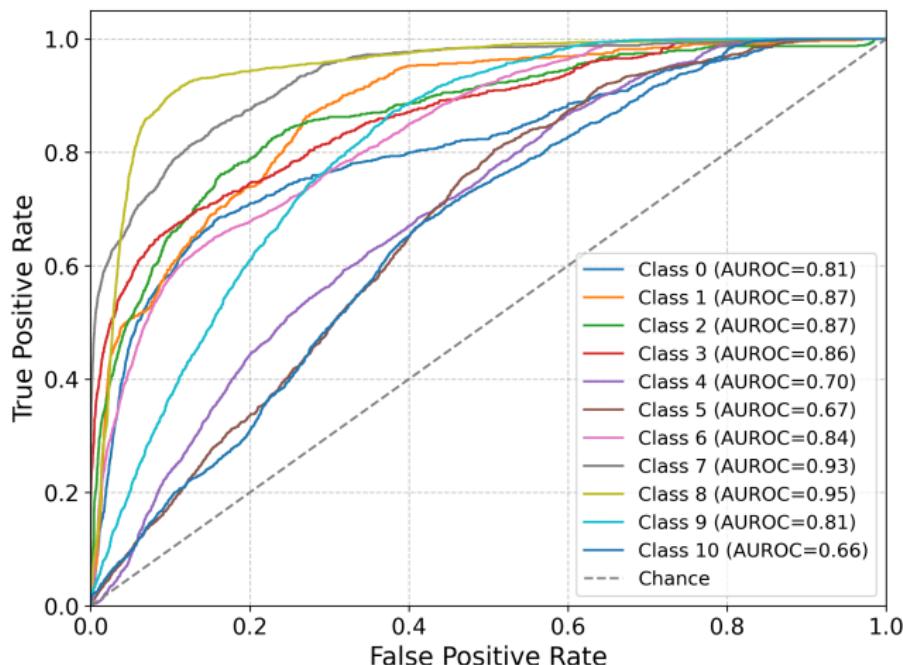
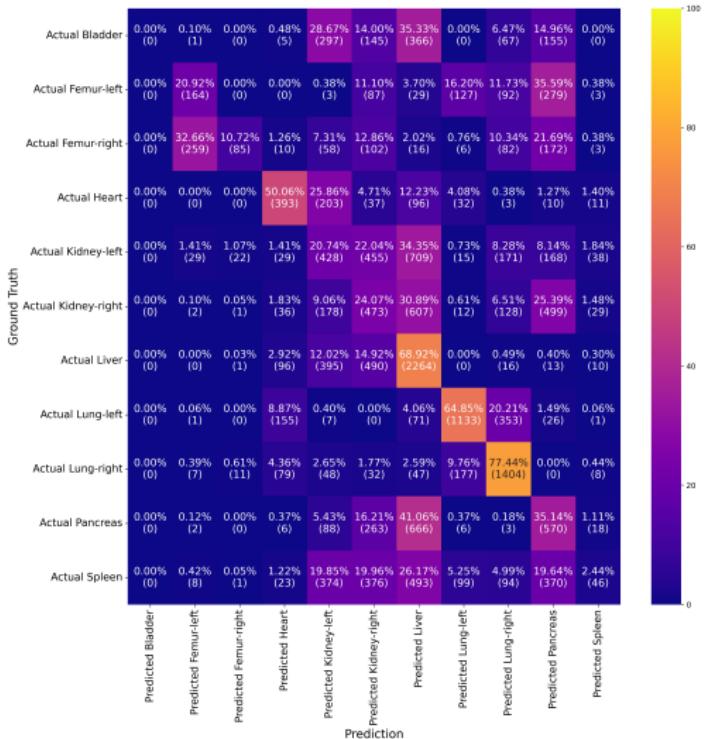


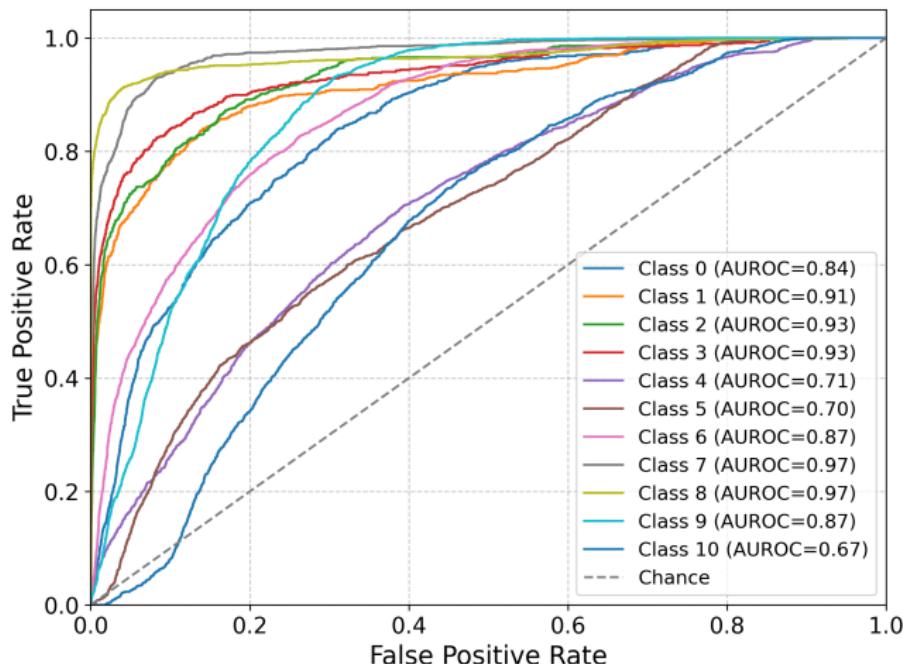
Figure 15: AUROC of DV QNN for OrganAMNIST dataset.

# Classification performance on OrganAMNIST



**Figure 16:** Confusion matrix of DV QNN for OrganAMNIST dataset.

# Classification performance on OrganAMNIST



**Figure 17:** AUROC of classical NN for OrganAMNIST dataset.

# Classification performance on OrganAMNIST

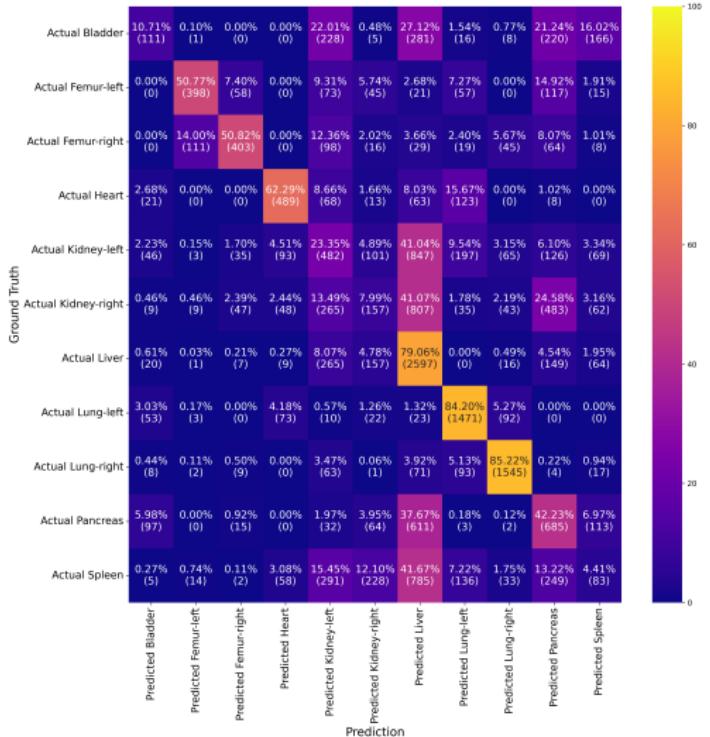
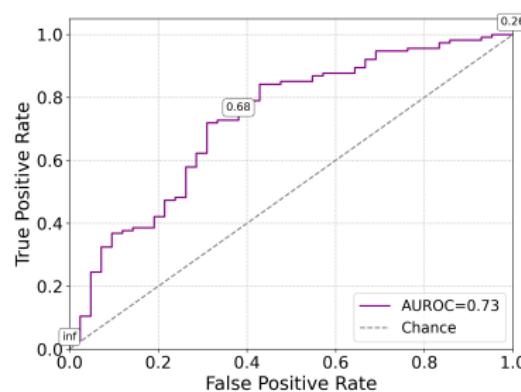
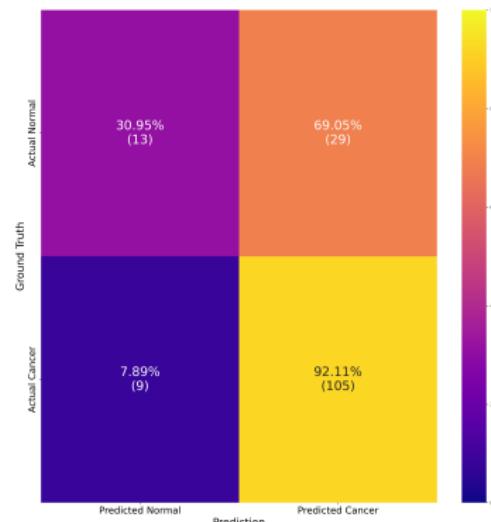


Figure 18: Confusion matrix of classical NN for OrganAMNIST dataset.

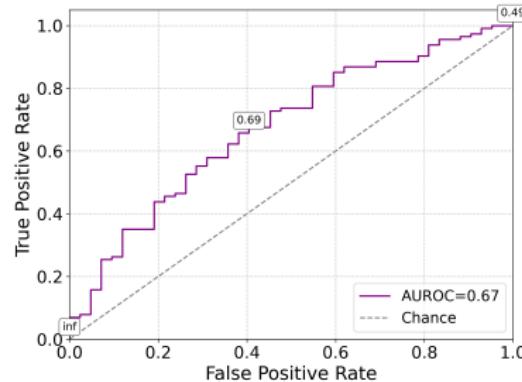
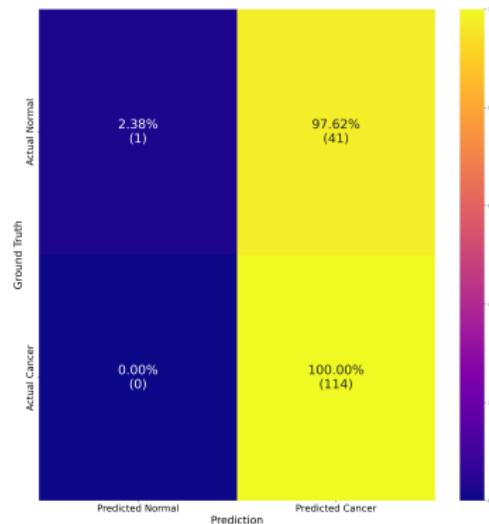
# Classification performance on BreastMNIST

# Classification performance on BreastMNIST



**Figure 19:** Results for CV QNN on BreastMNIST dataset.

# Classification performance on BreastMNIST



**Figure 20:** Results for DV QNN on BreastMNIST dataset.

# Classification performance on BreastMNIST

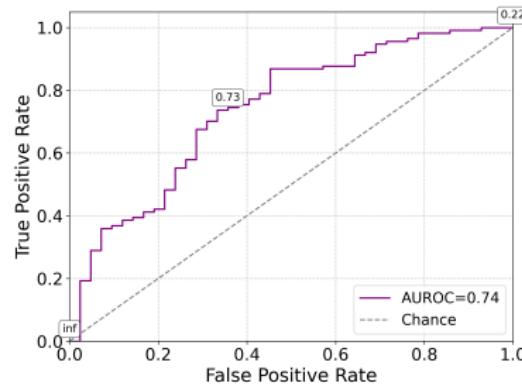
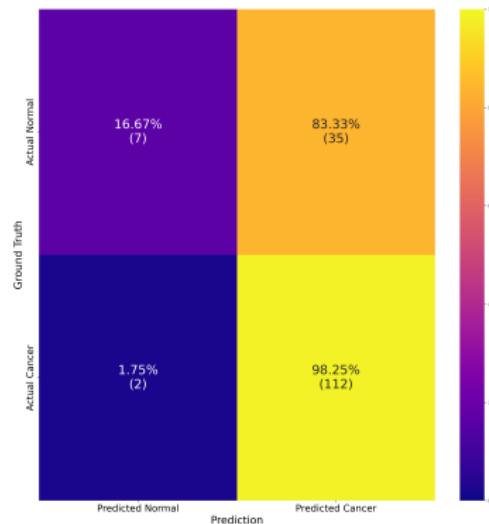
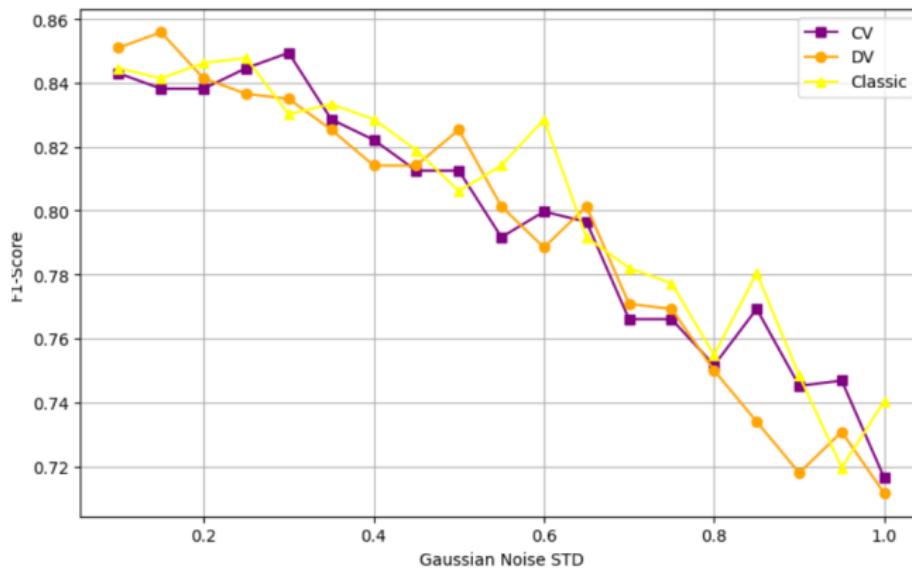


Figure 21: Results for classical NN on BreastMNIST dataset.

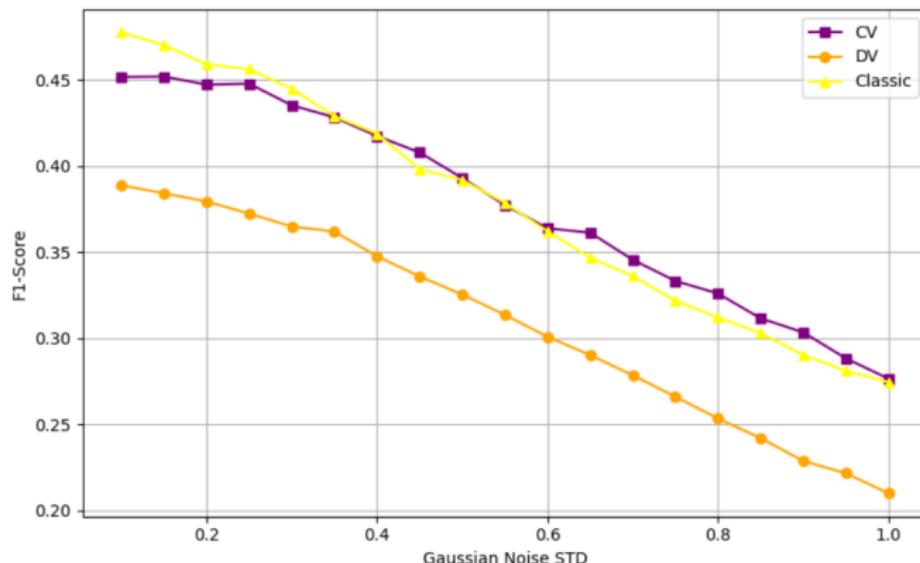
# Gaussian noise robustness comparison

# Gaussian noise robustness comparison



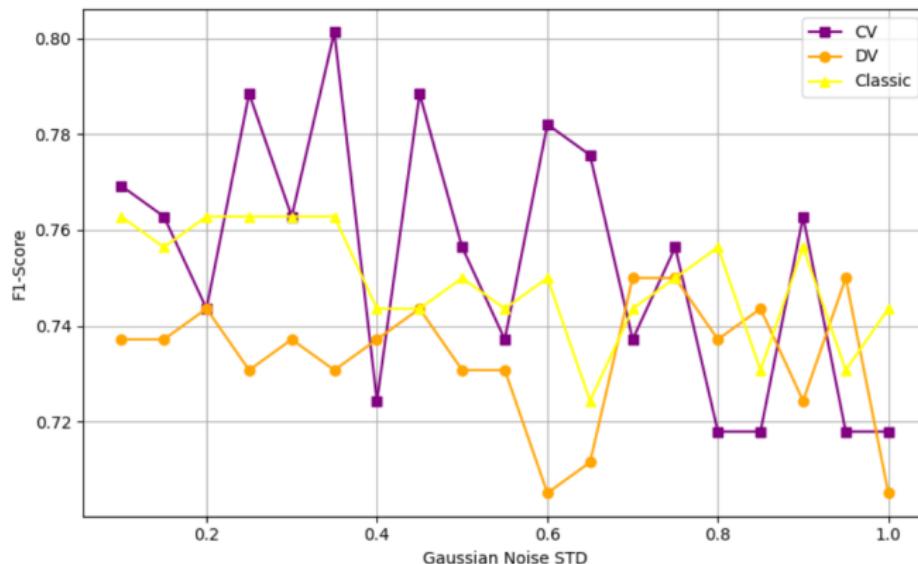
**Figure 22:** F1 score comparison on Gaussian noise for PneumoniaMNIST dataset.

# Gaussian noise robustness comparison



**Figure 23:** F1 score comparison on Gaussian noise for OrganAMNIST dataset.

# Gaussian noise robustness comparison



**Figure 24:** F1 score comparison on Gaussian noise for BreastMNIST.

# Test set results summary

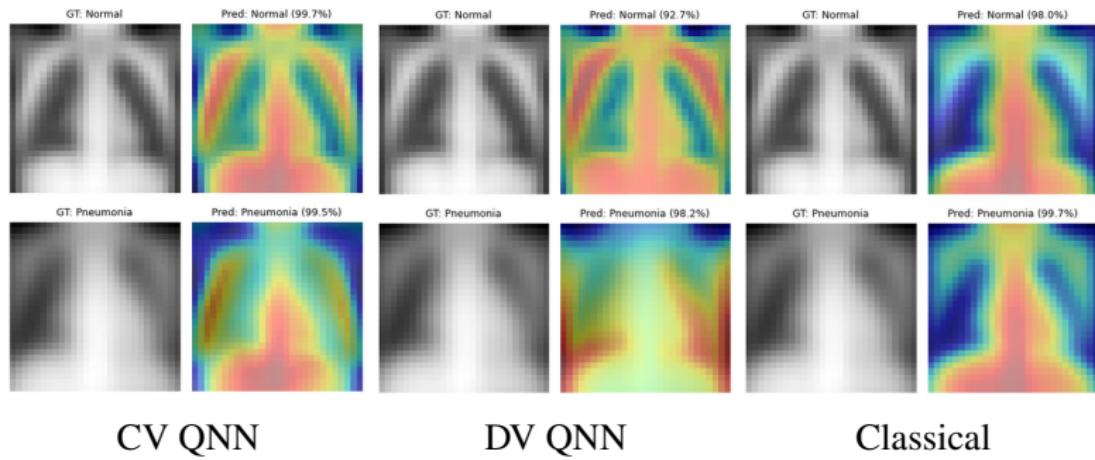
Table 2: Test set classification metrics.

| Model     | Dataset        | ACC           | P             | R             | F1            | AUROC         | AUPRC       |
|-----------|----------------|---------------|---------------|---------------|---------------|---------------|-------------|
| CV QNN    | BreastMNIST    | 0.7564        | 0.7564        | 0.7317        | 0.7564        | 0.73          | <b>0.86</b> |
|           | OrganAMNIST    | 0.4563        | 0.4563        | 0.4257        | 0.4563        | 0.8333        | 0.4554      |
|           | PneumoniaMNIST | 0.8429        | 0.8429        | 0.8437        | 0.8429        | <b>0.92</b>   | <b>0.93</b> |
| DV QNN    | BreastMNIST    | 0.7372        | 0.7372        | 0.7662        | 0.7372        | 0.67          | 0.84        |
|           | OrganAMNIST    | 0.3915        | 0.3915        | 0.3714        | 0.3915        | 0.8154        | 0.3754      |
|           | PneumoniaMNIST | <b>0.8542</b> | <b>0.8542</b> | 0.8534        | 0.8526        | <b>0.92</b>   | <b>0.93</b> |
| Classical | BreastMNIST    | <b>0.7628</b> | <b>0.7628</b> | <b>0.7662</b> | <b>0.7628</b> | <b>0.74</b>   | <b>0.86</b> |
|           | OrganAMNIST    | <b>0.4737</b> | <b>0.4737</b> | <b>0.4355</b> | <b>0.4737</b> | <b>0.8518</b> | <b>0.49</b> |
|           | PneumoniaMNIST | <b>0.8542</b> | <b>0.8542</b> | <b>0.8540</b> | <b>0.8542</b> | <b>0.92</b>   | <b>0.93</b> |

# Decision heatmap comparison

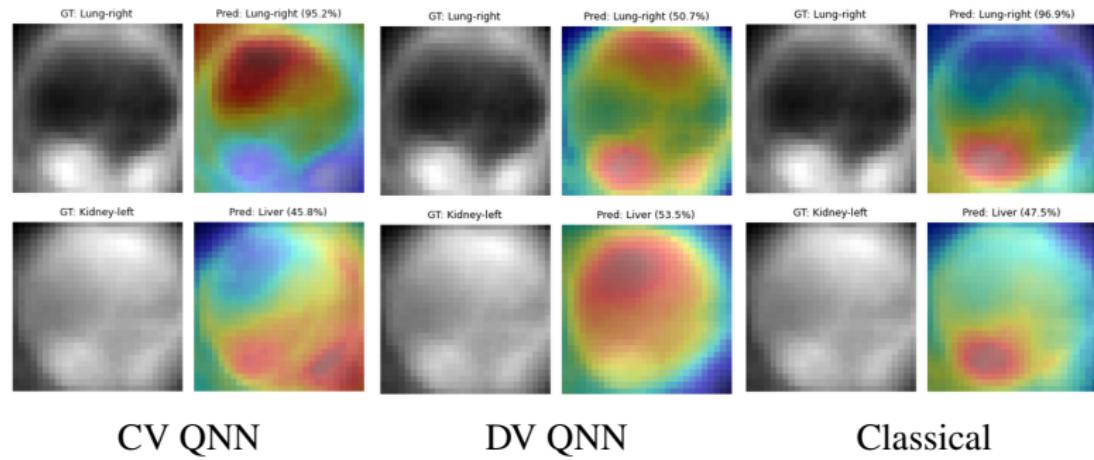


# Decision heatmap comparison



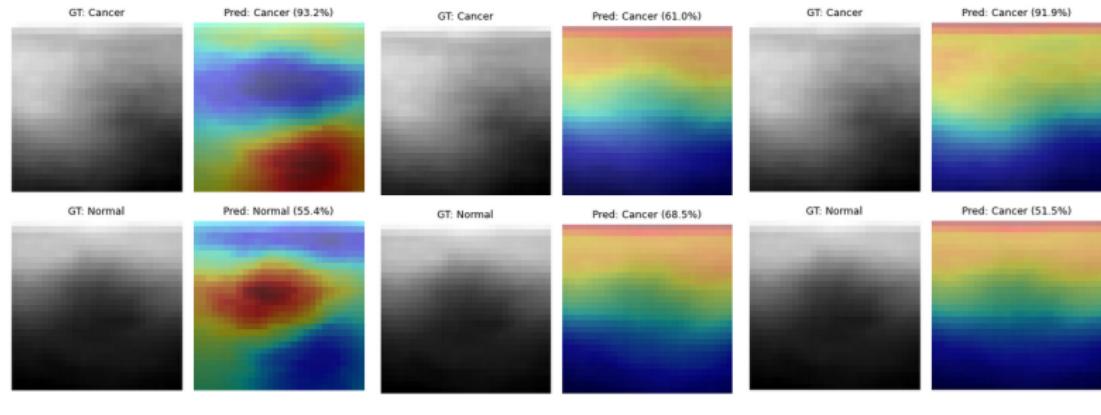
**Figure 25:** Decision heatmap GradCAM comparison on PneumoniaMNIST.

# Decision heatmap comparison



**Figure 26:** Decision heatmap GradCAM comparison on OrganAMNIST.

# Decision heatmap comparison



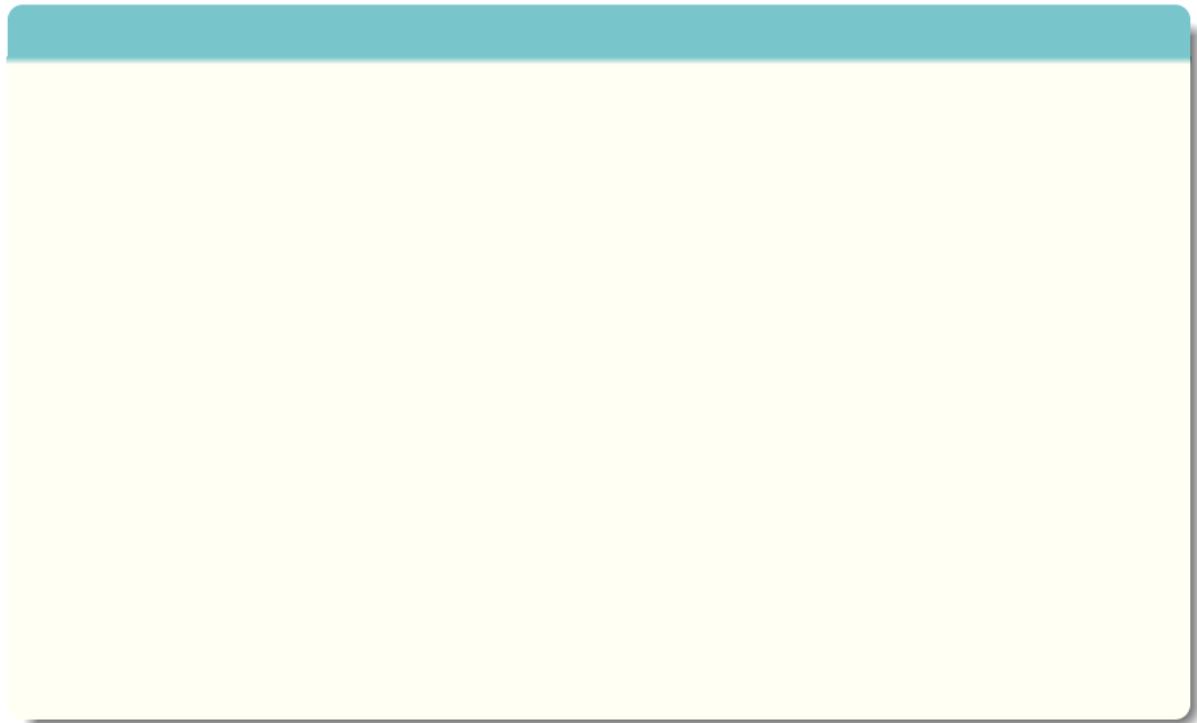
**Figure 27:** Decision heatmap GradCAM comparison.

---

## **5.- Conclusions and future work**

---

# Conclusions



# Conclusions

- The proposed CV and DV quantum models attain **comparable classification performance** to their classical counterpart (F1 scores of 75% in BreastMNIST, 45% OrganAMNIST, 85% in PneumoniaMNIST).

# Conclusions

- ▶ The proposed CV and DV quantum models attain **comparable classification performance** to their classical counterpart (F1 scores of 75% in BreastMNIST, 45% OrganAMNIST, 85% in PneumoniaMNIST).
- ▶ The proposed CV QNN shows slightly **higher performance** than its DV quantum counterpart in **multiclass classification** (+7% F1 score in OrganMNIST), and **slight advantage on minority class focus** (15% TN samples of BreastMNIST).

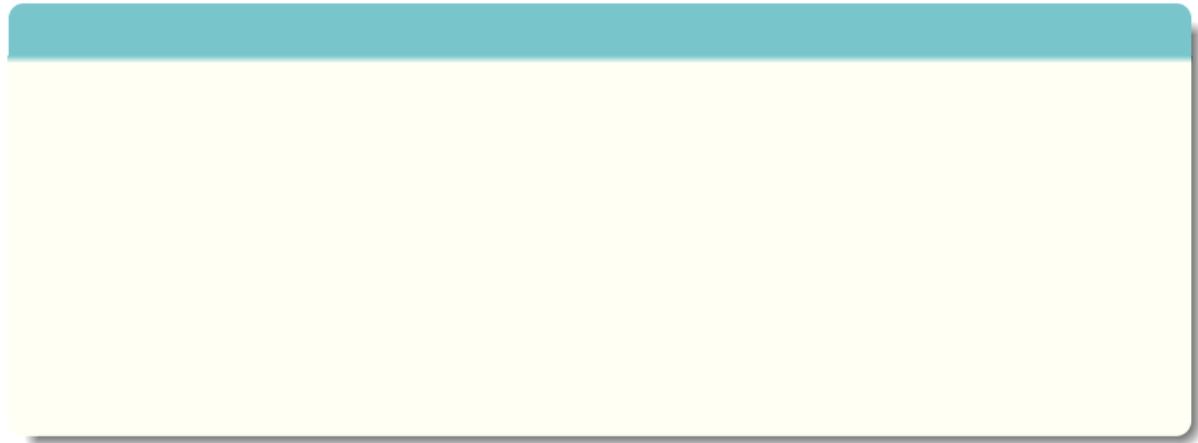
# Conclusions

- ▶ The proposed CV and DV quantum models attain **comparable classification performance** to their classical counterpart (F1 scores of 75% in BreastMNIST, 45% OrganAMNIST, 85% in PneumoniaMNIST).
- ▶ The proposed CV QNN shows slightly **higher performance** than its DV quantum counterpart in **multiclass classification** (+7% F1 score in OrganMNIST), and **slight advantage on minority class focus** (15% TN samples of BreastMNIST).
- ▶ Noise robustness testing shows **high resilience** for the CV QNN, demonstrating stability close to its classical counterpart over different levels of Gaussian noise.

# Conclusions

- ▶ The proposed CV and DV quantum models attain **comparable classification performance** to their classical counterpart (F1 scores of 75% in BreastMNIST, 45% OrganAMNIST, 85% in PneumoniaMNIST).
- ▶ The proposed CV QNN shows slightly **higher performance** than its DV quantum counterpart in **multiclass classification** (+7% F1 score in OrganMNIST), and **slight advantage on minority class focus** (15% TN samples of BreastMNIST).
- ▶ Noise robustness testing shows **high resilience** for the CV QNN, demonstrating stability close to its classical counterpart over different levels of Gaussian noise.
- ▶ Decision heatmaps of the proposed CV QNN shows **more interpretable highlighted areas**, particularly on the BreastMNIST dataset.

# Future work



# Future work

- ▶ Additional data preparation processes to **maximize data feature representation**.

# Future work

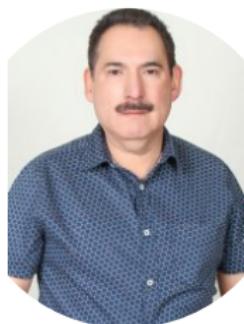
- ▶ Additional data preparation processes to **maximize data feature representation**.
- ▶ Test the proposed quantum models on **more complex datasets**.

# Future work

- ▶ Additional data preparation processes to **maximize data feature representation**.
- ▶ Test the proposed quantum models on **more complex datasets**.
- ▶ Further **development on quantum circuit** depth, qumode count, trainable parameters, as well as the introduction of non Gaussian gates.

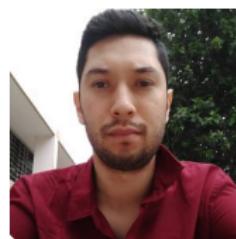
# Acknowledgements

## Collaborators



**Dr. Oscar Montiel**

CITEDI – IPN



**Dr. Miguel Angel Lopez**

CETYS Universidad



**Dr. Oscar Castillo**

Instituto Tecnológico de Tijuana



# Presentation references

- [1] Andre Esteva et al. 'Dermatologist-level classification of skin cancer with deep neural networks'. In: *Nature* 542 (7639 Feb. 2017), pp. 115–118. issn: 1476-4687. doi: [10.1038/NATURE21056](https://doi.org/10.1038/NATURE21056)
- [2] Constanze Polzer et al. 'AI-based automated detection and stability analysis of traumatic vertebral body fractures on computed tomography'. In: *European Journal of Radiology* 173 (Apr. 2024). issn: 18727727. doi: [10.1016/J.EJRAD.2024.111364](https://doi.org/10.1016/J.EJRAD.2024.111364)
- [3] Aqsa Dastgir et al. 'MAFMv3: An automated Multi-Scale Attention-Based Feature Fusion MobileNetv3 for spine lesion classification'. In: *Image and Vision Computing* 155 (Mar. 2025), p. 105440. issn: 0262-8856. doi: [10.1016/J.IMAVIS.2025.105440](https://doi.org/10.1016/J.IMAVIS.2025.105440)
- [4] Yann Lecun et al. 'Deep learning'. In: *Nature* 2015 521:7553 521 (7553 May 2015), pp. 436–444. issn: 1476-4687. doi: [10.1038/nature14539](https://doi.org/10.1038/nature14539)
- [6] Hoi Kwan Lau et al. 'Quantum Machine Learning over Infinite Dimensions'. In: *Physical Review Letters* 118 (8 Feb. 2017), p. 080501. issn: 10797114. doi: [10.1103/PhysRevLett.118.080501](https://doi.org/10.1103/PhysRevLett.118.080501)
- [7] Nathan Killoran et al. 'Continuous-variable quantum neural networks'. In: *Physical Review Research* 1 (3 June 2018). doi: [10.1103/PhysRevResearch.1.033063](https://doi.org/10.1103/PhysRevResearch.1.033063)
- [8] Galan Moody et al. 'Machine learning method for state preparation and gate synthesis on photonic quantum computers'. In: *Quantum Science and Technology* 4 (2 Jan. 2019), p. 024004. issn: 2058-9565. doi: [10.1088/2058-9565/AAF59E](https://doi.org/10.1088/2058-9565/AAF59E)
- [9] Pranav Kairon and Siddhartha Bhattacharyya. 'COVID-19 Outbreak Prediction Using Quantum Neural Networks'. In: *Advances in Intelligent Systems and Computing* 1279 (2021), pp. 113–123. issn: 2194-5365. doi: [10.1007/978-981-15-9290-4\\_12](https://doi.org/10.1007/978-981-15-9290-4_12)
- [10] Sophie Choe. 'Continuous Variable Quantum MNIST Classifiers'. In: (Apr. 2022)
- [11] Ebrahim Ghasemian et al. 'Quantum machine learning based on continuous variable single-photon states: an elementary foundation for quantum neural networks'. In: *Quantum Information Processing* 22 (10 Oct. 2023), pp. 1–22. issn: 15731332. doi: [10.1007/S11128-023-04137-4/FIGURES/9](https://doi.org/10.1007/S11128-023-04137-4/FIGURES/9)
- [12] Prabhat Anand et al. 'Time-Series Forecasting Using Continuous Variables-Based Quantum Neural Networks'. In: *2024 16th International Conference on COMmunication Systems and NETworkS, COMSNETS 2024* (2024), pp. 994–999. doi: [10.1109/COMSNETS59351.2024.10427192](https://doi.org/10.1109/COMSNETS59351.2024.10427192)

*Thank you for your attention*  
[dlopez@citedi.mx](mailto:dlopez@citedi.mx)

Centro de Investigación y Desarrollo de Tecnología Digital (CITEDI-IPN)



*Presented at ICE-10 Conference, Valencia, Spain – October 2025*