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1.- Introduction
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Al for Medical Imaging: Progress and Limitations

» Al has revolutionized medical image analysis [1-3].

> However, these models rely on large datasets and heavy
computation, limiting their scalability and interpretability [4].

> Quantum computing emerges a new paradigm to process information
more efficiently [5].
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Figure 1: Computation paradigm features and shift.
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Quantum AI: Paradigms and Gaps

Medical Diagnosis

Cancer,
Pneumonia, Bone fractures

Neural Networks
classification, regression
clustering

QML for Medical Imaging

Quantum Advantages
sensitivity, precision

Quantum Paradigms
Discrete (DV) and Continuous (CV)

Machine Learning Quantum Computing

Figure 2: Intersection of disciplines highlighting the research gap in quantum-enhanced medical diagnosis.

2

PN
CITEO/I

/ 19



PN
ﬂ CITEO/I

Our proposal

> Explore CV-QNNS for [MedMNIST Images]
medical image classification.

» Use Gaussian gates .
(D,R, S, BS) to emulate PCA Encoding

convolutional behavior.

» Evaluate model
performance, robustness,
and expressiveness against
classical and DV quantum Classical Head
counterparts.

CV Quantum Circuit
(Gaussian Gates: D, R, S, BS)

I

Datasets: BreastMNIST, OrganAMNIST,
PneumoniaMNIST

Evaluation: Accuracy, F1-score, AUROC,
noise robustness, interpretability.

Evaluation & Comparison
(CV-QNN vs DV-QNN vs CNN)

Figure 3: Methodology of the proposed work.
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2.- Related work
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State-of-the-art of Continuous-Variable QML
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Figure 4: Recent state-of-the-art of Continuous-Variable QML.
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» 2017: Subroutines are generalized for infinite-dimensional systems [6].
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» 2017: Subroutines are generalized for infinite-dimensional systems [6].
» 2018: First CV neural networks for CV quantum computers [7].

»> 2019: ML and optimization with variable parameters for short-depth photonic circuits

[8].
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Neural network implementations on photonic computers to encode spectral ampli-
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Subroutines are generalized for infinite-dimensional systems [6].

First CV neural networks for CV quantum computers [7].

ML and optimization with variable parameters for short-depth photonic circuits [8].
COVID-19 diagnosis through CV QNNs [9].

MNIST classification via CV QNN architecture [10].

Neural network implementations on photonic computers to encode spectral ampli-

tude information [11].

2024:

Time-series forecasting comparison between quantum CV, DV and classical ap-

proaches [12].
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3.- Methodology




Data preparation

Label: 0 Label: 1 Label: 0 Label: 1 Label: 0

FNFY

a

=

Label: 1 Label: 1

p |
)
4

Label: 1 Label: 1 Label: 1

Label: 1

Label: 1 Label: 0 Label: 1

Label: 6 Label: 8 Label: 5 Label: 6

Label: 7

Figure 5: Comparison between original and PCA-reconstructed images.
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Data dimensionality reduction

Table 1: Dimensionality reduction using PCA across MedMNIST datasets.

Dataset Task Dimensions No. Samples PCA Var.

Breast Binary (28,28, 1) 546 4 ~60%
Organ Multiclass (28,28, 1) 10368 4 ~48%
Pneumonia  Binary (28,28, 1) 4708 4  ~60%
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Continuous-Variable quantum neural network
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Continuous-Variable quantum neural network
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Figure 6: The proposed 4-mode Continuous-Variable (CV) quantum circuit.

Displacement gate

D(a) = exp(cy&T - aa),
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Continuous-Variable quantum neural network
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Figure 6: The proposed 4-mode Continuous-Variable (CV) quantum circuit.

Rotation gate

R(¢) = exp(iga‘a),
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Continuous-Variable quantum neural network
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Figure 6: The proposed 4-mode Continuous-Variable (CV) quantum circuit.

Squeezing gate

S(r) = expl%r(&z - (&*)2)} , 3)
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Continuous-Variable quantum neural network

NN R

BS BS

Figure 6: The proposed 4-mode Continuous-Variable (CV) quantum circuit.

Beamsplitter gate

BS(0,9) = exp|o(e®afar - @) |, (4)
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Continuous-Variable quantum neural network

q3 RS

Figure 6: The proposed 4-mode Continuous-Variable (CV) quantum circuit.
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Measurement on position quadratures
y: [<Xl>a<5(2>’9<j(n>] (5)
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Continuous-Variable quantum neural network
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Figure 6: The proposed 4-mode Continuous-Variable (CV) quantum circuit.

Component Formula Parameters Description
Quantum CV Layer 2 x4 x4 32 (D,R, S, BS)
Classical Head 4x2+2 10 Linear layer mapping
Total - 42 Trainable parameters
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Discrete-Variable quantum neural network
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Discrete-Variable quantum neural network
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Figure 7: The proposed 4-qubit DV quantum circuit.

i

|

|

Rotation on y-axis gate
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Discrete-Variable quantum neural network
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Figure 7: The proposed 4-qubit DV quantum circuit.
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Discrete-Variable quantum neural network
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Figure 7: The proposed 4-qubit DV quantum circuit.
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Discrete-Variable quantum neural network
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Figure 7: The proposed 4-qubit DV quantum circuit.

i

E

N

Measurement along the z-axis

Measurement = (|0 |¢), 9

8 / 19



PN
ﬂ CITEO/I

Discrete-Variable quantum neural network
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Figure 7: The proposed 4-qubit DV quantum circuit.
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Component Formula Parameters Description
Quantum DV Layer 2 x4 x4 32 (Ry,Rz,Ry,R7)
Classical Head 4x2+2 10 Linear layer mapping
Total - 42 Trainable parameters
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Classification Metrics and Confusion Matrix

Classification Metrics

pe P
T TP+ FP’
Re TP
TP + FN
TP + TN
ACC= — - FT%
TP+ TN + FP + FN
PxR
Fl=2 . 10
(Fok) o

P: Precision,
R: Recall,
ACC: Accuracy,
F1: Fl-score.

True Class
lass D Class C Class B Class A

C

Confusion Matrix (Class B)
Predicted Class

Class A Class B Class C Class D

Figure 8: Multiclass confusion matrix for class B.
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Area under the characteristic operating curve
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Figure 9: Area under Receiver Operating Characteristic (ROC) curve.

b
AUROC(0) = / TPR(o)d(FPR(c). (11)
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4.- Experiments and results




Classification performance on PneumoniaMNIST

11 / 19



Classification performance on PneumoniaMNIST
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Figure 10: Results for CV QNN on PneumoniaMNIST dataset.
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Classification performance on PneumoniaMNIST
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Figure 11: Results for DV QNN on PneumoniaMNIST dataset.
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Classification performance on PneumoniaMNIST
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Figure 12: Results for classical NN on PneumoniaMNIST dataset.
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Classification performance on OrganAMNIST

True Positive Rate

1.0

o
©

o
o

o
IS

0.2

Class 0 (AUROC=0.85)
Class 1 (AUROC=0.87)
Class 2 (AUROC=0.86)
Class 3 (AUROC=0.95)
Class 4 (AUROC=0.69)
Class 5 (AUROC=0.72)
Class 6 (AUROC=0.83)
Class 7 (AUROC=0.95)
Class 8 (AUROC=0.98)
Class 9 (AUROC=0.83)
Class 10 (AUROC=0.64)
Chance

02 0.4 0.6 08 1.0
False Positive Rate

Figure 13: AUROC of CV QNN for OrganAMNIST dataset.
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Classification performance on OrganAMNIST
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Figure 14: Confusion matrix of CV QNN for OrganAMNIST dataset.
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Classification performance on OrganAMNIST
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Figure 15: AUROC of DV QNN for OrganAMNIST dataset.
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Figure 16: Confusion matrix of DV QNN for OrganAMNIST dataset.
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Classification performance on OrganAMNIST
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Figure 17: AUROC of classical NN for OrganAMNIST dataset.
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Figure 18: Confusion matrix of classical NN for OrganAMNIST dataset.
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Classification performance on BreastMNIST
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Classification performance on BreastMNIST
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Figure 19: Results for CV QNN on BreastMNIST dataset.

13 / 19



e
CcITEO!

Classification performance on BreastMNIST
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Figure 20: Results for DV QNN on BreastMNIST dataset.
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Classification performance on BreastMNIST
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Figure 21: Results for classical NN on BreastMNIST dataset.
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Gaussian noise robustness comparison
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Figure 22: F1 score comparison on Gaussian noise for PneumoniaMNIST dataset.
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Gaussian noise robustness comparison

0.45

0.40

F1-Score
o
w
v

o
w
=]

0.25

- v
~e— DV
Classic |

0.2

0.4

0.6
Gaussian Noise STD

0:8

1.0

Figure 23: F1 score comparison on Gaussian noise for for OrganAMNIST dataset.
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Gaussian noise robustness comparison
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Figure 24: F1 score comparison on Gaussian noise for BreastMNIST.
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Test set results summary

Table 2: Test set classification metrics.

e
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Model Dataset ACC P R F1 AUROC AUPRC
BreastMNIST 0.7564 0.7564 0.7317 0.7564  0.73 0.86
CV QNN OrganAMNIST 0.4563 0.4563 0.4257 0.4563 0.8333  0.4554
PneumoniaMNIST 0.8429 0.8429 0.8437 0.8429  0.92 0.93
BreastMNIST 0.7372 0.7372 0.7662 0.7372  0.67 0.84
DV QNN OrganAMNIST 0.3915 0.3915 03714 03915 0.8154 03754
PneumoniaMNIST 0.8542 0.8542 0.8534 0.8526 0.92 0.93
BreastMNIST 0.7628 0.7628 0.7662 0.7628  0.74 0.86
Classical QOrganAMNIST ~ 0.4737 0.4737 0.4355 0.4737 0.8518  0.49
PneumoniaMNIST 0.8542 0.8542 0.8540 0.8542  0.92 0.93
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Decision heatmap comparison
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Figure 25: Decision heatmap GradCAM comparison on PneumoniaMNIST.
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Decision heatmap comparison
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Figure 26: Decision heatmap GradCAM comparison on OrganAMNIST.
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Figure 27: Decision heatmap GradCAM comparison.
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5.- Conclusions and future work
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» The proposed CV and DV quantum models attain comparable classifi-
cation performance to their classical counterpart (F1 scores of 75% in
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Conclusions

» The proposed CV and DV quantum models attain comparable classifi-
cation performance to their classical counterpart (F1 scores of 75% in
BreastMNIST, 45% OrganAMNIST, 85% in PneumoniaMNIST).

» The proposed CV QNN shows slightly higher performance than its
DV quantum counterpart in multiclass classification (+7% F1 score in
OrganMNIST), and slight advantage on minority class focus (15% TN
samples of BreastMNIST).
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Conclusions

» The proposed CV and DV quantum models attain comparable classifi-
cation performance to their classical counterpart (F1 scores of 75% in
BreastMNIST, 45% OrganAMNIST, 85% in PneumoniaMNIST).
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» The proposed CV QNN shows slightly higher performance than its
DV quantum counterpart in multiclass classification (+7% F1 score in
OrganMNIST), and slight advantage on minority class focus (15% TN
samples of BreastMNIST).

» Noise robustness testing shows high resilience for the CV QNN, demon-
strating stability close to its classical counterpart over different levels of
Gaussian noise.

» Decision heatmaps of the proposed CV QNN shows more interpretable
highlighted areas, particularly on the BreastMNIST dataset.
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