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1.- Introduction



AI for Medical Imaging: Progress and Limitations
▶ AI, has revolutionized medical image analysis [1–3].
▶ However, these models rely on large datasets and heavy

computation, limiting their scalability and interpretability [4].
▶ Quantum computing emerges a new paradigm to process information

more efficiently [5].
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Figure 1: Computation paradigm features and shift.
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Quantum AI: Paradigms and Gaps

Machine Learning Quantum Computing

Medical Diagnosis

QML for Medical Imaging

Quantum Paradigms
Discrete (DV) and Continuous (CV)
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Quantum Advantages
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Figure 2: Intersection of disciplines highlighting the research gap in quantum-enhanced medical diagnosis.
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Our proposal

▶ Explore CV-QNNs for
medical image classification.

▶ Use Gaussian gates
(D,R, S,BS) to emulate
convolutional behavior.

▶ Evaluate model
performance, robustness,
and expressiveness against
classical and DV quantum
counterparts.

Datasets: BreastMNIST, OrganAMNIST,
PneumoniaMNIST
Evaluation: Accuracy, F1-score, AUROC,
noise robustness, interpretability.

MedMNIST Images

PCA Encoding

CV Quantum Circuit
(Gaussian Gates: D, R, S, BS)

Classical Head

Evaluation & Comparison
(CV-QNN vs DV-QNN vs CNN)

Figure 3: Methodology of the proposed work.
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2.- Related work



State-of-the-art of Continuous-Variable QML

Lau Killoran Moody Kairon Choe Ghasemian Anand

2017 2018 2019 2021 2022 2023 2024

Figure 4: Recent state-of-the-art of Continuous-Variable QML.
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3.- Methodology



Data preparation

Figure 5: Comparison between original and PCA-reconstructed images.
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Data dimensionality reduction

Table 1: Dimensionality reduction using PCA across MedMNIST datasets.

Dataset Task Dimensions No. Samples PCA 𝜎2

Breast Binary (28, 28, 1) 546 4 ∼60%

Organ Multiclass (28, 28, 1) 10368 4 ∼48%

Pneumonia Binary (28, 28, 1) 4708 4 ∼60%
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Continuous-Variable quantum neural network
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Continuous-Variable quantum neural network

q0 D R S
BS

R S
BS

q1 D R S R S

q2 D R S R S

q3 D R S R S

Figure 6: The proposed 4-mode Continuous-Variable (CV) quantum circuit.

Displacement gate
D(𝛼) = exp

(
𝛼â† − 𝛼â

)
, (1)
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Continuous-Variable quantum neural network

q0 D R S
BS

R S
BS

q1 D R S R S

q2 D R S R S

q3 D R S R S

Figure 6: The proposed 4-mode Continuous-Variable (CV) quantum circuit.

Rotation gate
R(𝜙) = exp

(
i𝜙â†â

)
, (2)
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Continuous-Variable quantum neural network

q0 D R S
BS

R S
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q1 D R S R S

q2 D R S R S

q3 D R S R S

Figure 6: The proposed 4-mode Continuous-Variable (CV) quantum circuit.

Squeezing gate

S(r) = exp

[
1
2

r
(
â2 − (â†)2

)]
, (3)
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Continuous-Variable quantum neural network

q0 D R S
BS

R S
BS

q1 D R S R S

q2 D R S R S

q3 D R S R S

Figure 6: The proposed 4-mode Continuous-Variable (CV) quantum circuit.

Beamsplitter gate

BS(𝜃, 𝜙) = exp
[
𝜃

(
ei𝜙â†1â2 − e−i𝜙â1â†2

)]
, (4)

7 / 18



Continuous-Variable quantum neural network

q0 D R S
BS

R S
BS

q1 D R S R S

q2 D R S R S

q3 D R S R S

Figure 6: The proposed 4-mode Continuous-Variable (CV) quantum circuit.

Measurement on position quadratures
y =

[
⟨X̂1⟩, ⟨X̂2⟩, . . . , ⟨X̂n⟩

]
. (5)
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Continuous-Variable quantum neural network

q0 D R S
BS

R S
BS

q1 D R S R S

q2 D R S R S

q3 D R S R S

Figure 6: The proposed 4-mode Continuous-Variable (CV) quantum circuit.

Component Formula Parameters Description

Quantum CV Layer 2 × 4 × 4 32 (D,R, S,BS)

Classical Head 4 × 2 + 2 10 Linear layer mapping

Total – 42 Trainable parameters
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Discrete-Variable quantum neural network
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Discrete-Variable quantum neural network

q0 RY RZ RY RZ RY

q1 RY RZ RY RZ RY

q2 RY RZ RY RZ RY

q3 RY RZ RY RZ RY

Figure 7: The proposed 4-qubit DV quantum circuit.

Rotation on y-axis gate

Ry(𝜙) = e−i𝜙𝜎y/2 =

[
cos(𝜙/2) − sin(𝜙/2)
sin(𝜙/2) cos(𝜙/2)

]
, (6)
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Discrete-Variable quantum neural network

q0 RY RZ RY RZ RY

q1 RY RZ RY RZ RY

q2 RY RZ RY RZ RY

q3 RY RZ RY RZ RY

Figure 7: The proposed 4-qubit DV quantum circuit.

Rotation on z-axis gate

Rz(𝜙) = e−i𝜙𝜎z/2 =

[
e−i𝜙/2 0

0 ei𝜙/2

]
. (7)
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Discrete-Variable quantum neural network

q0 RY RZ RY RZ RY

q1 RY RZ RY RZ RY

q2 RY RZ RY RZ RY

q3 RY RZ RY RZ RY

Figure 7: The proposed 4-qubit DV quantum circuit.

Controlled NOT gate

CNOT = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (8)
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Discrete-Variable quantum neural network

q0 RY RZ RY RZ RY

q1 RY RZ RY RZ RY

q2 RY RZ RY RZ RY

q3 RY RZ RY RZ RY

Figure 7: The proposed 4-qubit DV quantum circuit.

Measurement along the z-axis

Measurement = ⟨𝜓 |𝜎z |𝜓⟩, (9)
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Discrete-Variable quantum neural network
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Figure 7: The proposed 4-qubit DV quantum circuit.

Component Formula Parameters Description

Quantum DV Layer 2 × 4 × 4 32 (RY ,RZ ,RY ,RZ)

Classical Head 4 × 2 + 2 10 Linear layer mapping

Total – 42 Trainable parameters
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Discrete-Variable quantum neural network
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Classification Metrics and Confusion Matrix

Classification Metrics

P =
TP

TP + FP
,

R =
TP

TP + FN
,

ACC =
TP + TN

TP + TN + FP + FN
,

F1 = 2
(
P × R
P + R

)
. (10)

P: Precision,
R: Recall,
ACC: Accuracy,
F1: F1-score.

Confusion Matrix (Class B)
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Figure 8: Multiclass confusion matrix for class B.
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Area under the characteristic operating curve
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Figure 9: Area under Receiver Operating Characteristic (ROC) curve.

AUROC(𝜎) =
∫ b

a
TPR(𝜎)d(FPR(𝜎). (11)
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4.- Experiments and results



Classification performance on PneumoniaMNIST
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Classification performance on PneumoniaMNIST

Figure 10: Results for CV QNN on PneumoniaMNIST dataset.
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Classification performance on PneumoniaMNIST

Figure 11: Results for DV QNN on PneumoniaMNIST dataset.
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Classification performance on PneumoniaMNIST

Figure 12: Results for classical NN on PneumoniaMNIST dataset.
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Classification performance on OrganAMNIST
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Classification performance on OrganAMNIST

Figure 13: AUROC of CV QNN for OrganAMNIST dataset.
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Classification performance on OrganAMNIST

Figure 14: Confusion matrix of CV QNN for OrganAMNIST dataset.
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Classification performance on OrganAMNIST

Figure 15: AUROC of DV QNN for OrganAMNIST dataset.
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Classification performance on OrganAMNIST

Figure 16: Confusion matrix of DV QNN for OrganAMNIST dataset.
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Classification performance on OrganAMNIST

Figure 17: AUROC of classical NN for OrganAMNIST dataset.
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Classification performance on OrganAMNIST

Figure 18: Confusion matrix of classical NN for OrganAMNIST dataset.
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Classification performance on BreastMNIST
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Classification performance on BreastMNIST

Figure 19: Results for CV QNN on BreastMNIST dataset.
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Classification performance on BreastMNIST

Figure 20: Results for DV QNN on BreastMNIST dataset.
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Classification performance on BreastMNIST

Figure 21: Results for classical NN on BreastMNIST dataset.
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Gaussian noise robustness comparison
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Gaussian noise robustness comparison

Figure 22: F1 score comparison on Gaussian noise for PneumoniaMNIST dataset.
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Gaussian noise robustness comparison

Figure 23: F1 score comparison on Gaussian noise for for OrganAMNIST dataset.
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Gaussian noise robustness comparison

Figure 24: F1 score comparison on Gaussian noise for BreastMNIST.
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Test set results summary
Table 2: Test set classification metrics.

Model Dataset ACC P R F1 AUROC AUPRC

CV QNN

BreastMNIST 0.7564 0.7564 0.7317 0.7564 0.73 0.86

OrganAMNIST 0.4563 0.4563 0.4257 0.4563 0.8333 0.4554

PneumoniaMNIST 0.8429 0.8429 0.8437 0.8429 0.92 0.93

DV QNN

BreastMNIST 0.7372 0.7372 0.7662 0.7372 0.67 0.84

OrganAMNIST 0.3915 0.3915 0.3714 0.3915 0.8154 0.3754

PneumoniaMNIST 0.8542 0.8542 0.8534 0.8526 0.92 0.93

Classical

BreastMNIST 0.7628 0.7628 0.7662 0.7628 0.74 0.86

OrganAMNIST 0.4737 0.4737 0.4355 0.4737 0.8518 0.49

PneumoniaMNIST 0.8542 0.8542 0.8540 0.8542 0.92 0.93
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Decision heatmap comparison
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Decision heatmap comparison

CV QNN DV QNN Classical

Figure 25: Decision heatmap GradCAM comparison on PneumoniaMNIST.
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Decision heatmap comparison

CV QNN DV QNN Classical

Figure 26: Decision heatmap GradCAM comparison on OrganAMNIST.

16 / 18



Decision heatmap comparison

CV QNN DV QNN Classical

Figure 27: Decision heatmap GradCAM comparison.
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5.- Conclusions and future work



Conclusions

▶ The proposed CV and DV quantum models attain comparable classifi-
cation performance to their classical counterpart (F1 scores of 75% in
BreastMNIST, 45% OrganAMNIST, 85% in PneumoniaMNIST).

▶ The proposed CV QNN shows slightly higher performance than its
DV quantum counterpart in multiclass classification (+7% F1 score in
OrganMNIST), and slight advantage on minority class focus (15% TN
samples of BreastMNIST).

▶ Noise robustness testing shows high resilience for the CV QNN, demon-
strating stability close to its classical counterpart over different levels of
Gaussian noise.

▶ Decision heatmaps of the proposed CV QNN shows more interpretable
highlighted areas, particularly on the BreastMNIST dataset.
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Future work

▶ Additional data preparation processes to maximize data feature
representation.

▶ Test the proposed quantum models on more complex datasets.

▶ Further development on quantum circuit depth, qumode count,
trainable parameters, as well as the introduction of non Gaussian
gates.
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