

# Optimal quantum transport on a ring via locally monitored chiral quantum walks

---

Sara Finocchiaro



UNIVERSITÀ DEGLI STUDI  
DELL'INSUBRIA

# Outline

---

## Model

---

Optimization problem

Optimal detection period

Optimal phase

---

Dark states analysis

---

Perron-Frobenius analysis

---

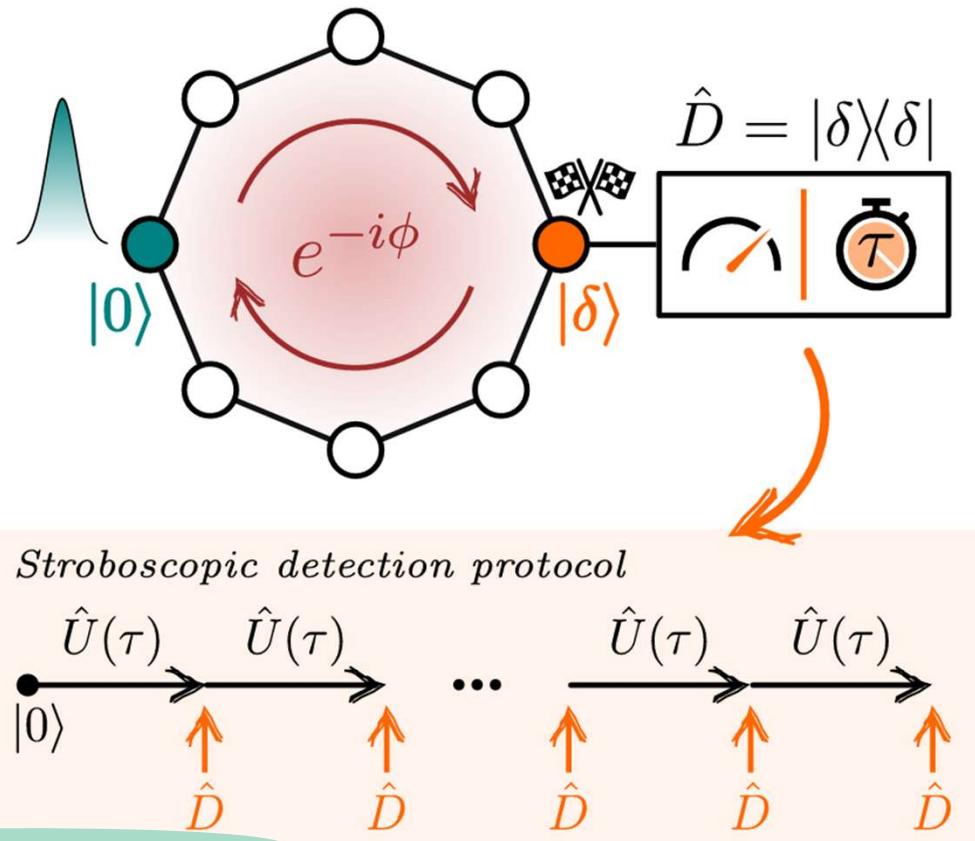
Asymptotic dynamics time scale and  
finite time effects

---

Conclusions

# Model

We consider a continuous time chiral quantum walk on a ring, investigating the role of **chirality** and **local monitoring** in enhancing the transfer of an excitation between opposite sites.



Initial state:  $|\psi_0\rangle = |0\rangle$

Target site:  $|\delta\rangle = \begin{cases} |N/2\rangle & \text{even } N \\ |(N \pm 1)/2\rangle & \text{odd } N \end{cases}$

$$H = \sum_{j=0}^{N-1} e^{-i\phi} |(j+1)_N\rangle\langle j| + e^{i\phi} |(j-1)_N\rangle\langle j|$$

The walker is observed by the detector for the first time at the  $n$ th attempt  $\rightarrow$  First-detected-passage time:  $n\tau$

# Optimization problem

- ▶ Goal: find an **optimal and robust transfer protocol** that maximizes the detection probability at the target site without requiring fine tuning of parameters.
- ▶ Detection probability up to time  $n\tau$ :

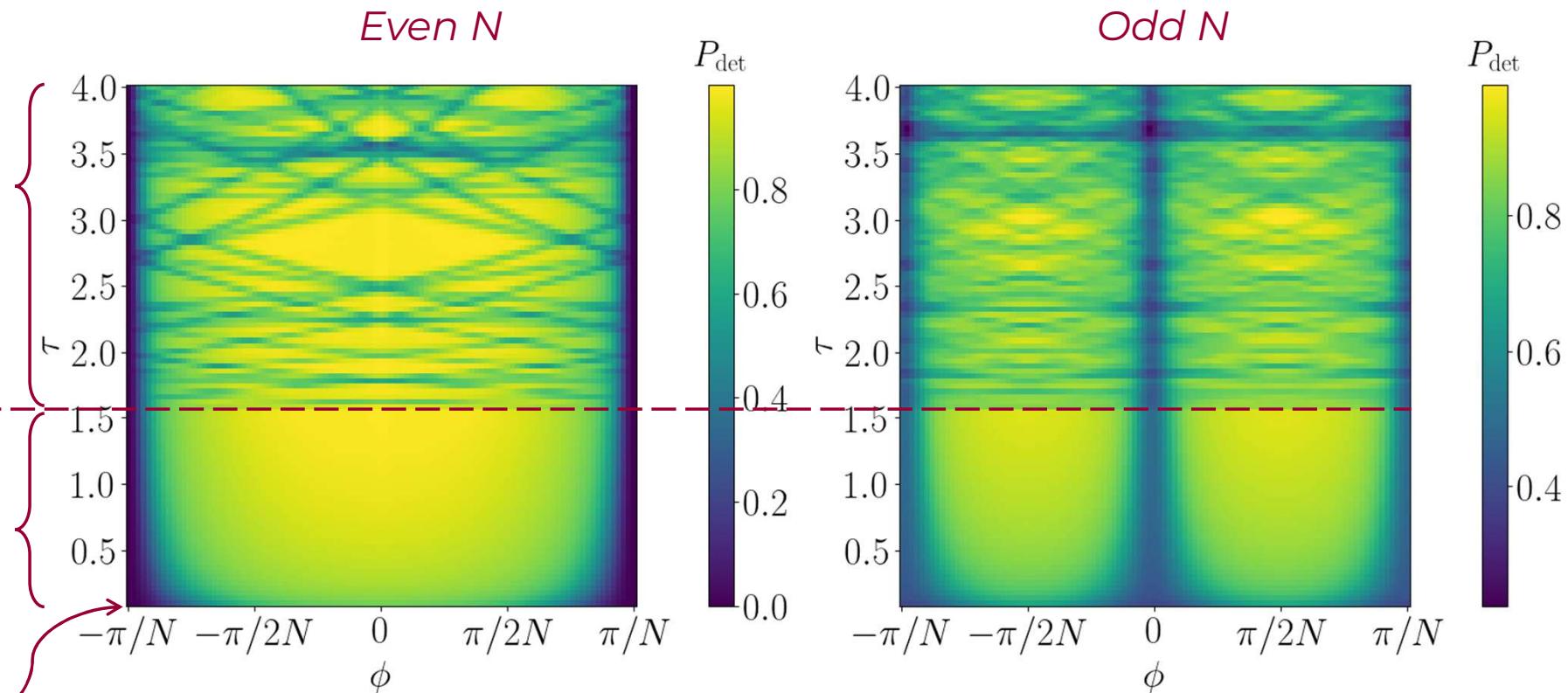
$$P_{det}(n) = \sum_{m=1}^n F_m, \text{ with } F_n = \langle \theta_n | \hat{D} | \theta_n \rangle \text{ and } |\theta_n\rangle = \hat{U}(\tau) [(\mathbb{I} - \hat{D}) \hat{U}(\tau)]^{n-1} |\psi_0\rangle.$$

- ▶ The total time of the process is assumed to be a resource and fixed at a convenient value  $T = 200$ .  $P_{det}(\phi, \tau)$  after  $n = \lfloor T/\tau \rfloor$  detection attempt is maximized over  $\phi$  and  $\tau$ .

H. Friedman, D. A. Kessler, and E. Barkai, Phys. Rev. E 95, 032141 (2017).

# Optimal detection period

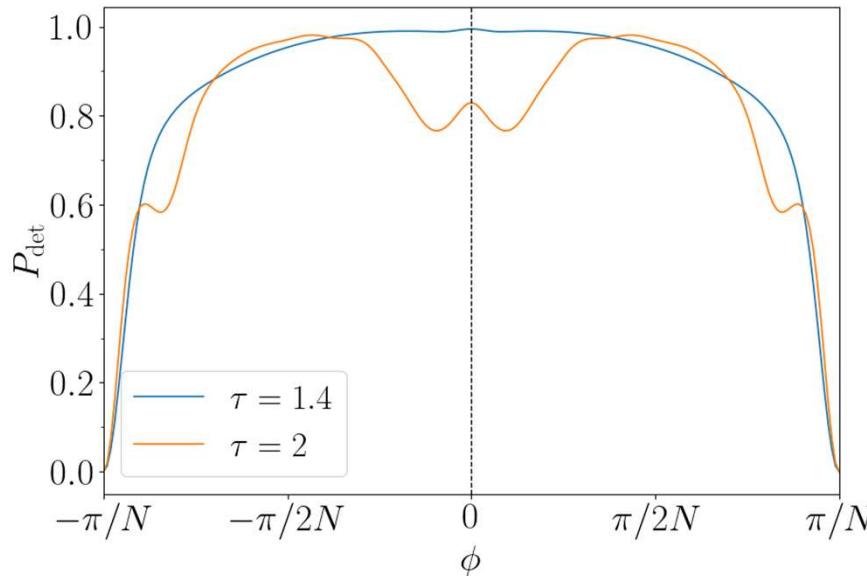
- ▶ Highly structured pattern with sharp oscillations
- ▶ **Threshold  $\tau^*$**  
- ▶ Smooth behavior, generally increasing with  $\tau$
- ▶ Quantum Zeno effect:  $P_{det} \rightarrow 0$  as  $\tau \rightarrow 0$



We aim for a robust protocol that does not require prior knowledge of parameters, so we restrict the optimization to the region  $0 < \tau \leq \tau^*$  (We will show that for large  $N$   $\tau^* \rightarrow \pi/2^+$ ).

# Optimal phase

Even  $N$

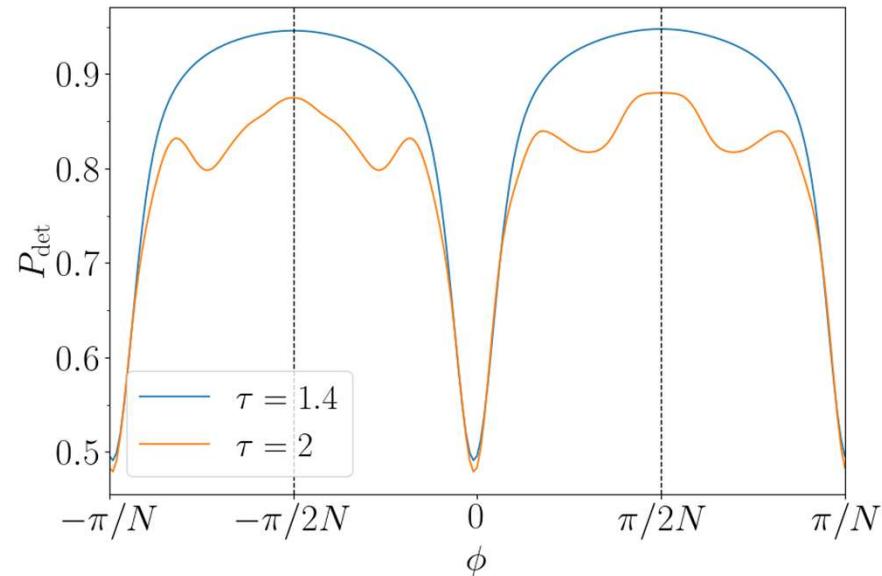


$$P_{det}(\phi, \tau) = P_{det}(-\phi, \tau)$$

For  $\tau < \tau^*$   $\phi_{opt} = 0$  and  $P_{det} = 0$   
 at  $\phi = \pm\pi/N$   
 $\downarrow$

chirality inhibits excitation transfer  
 between opposite sites of the symmetric  
 cycle

Odd  $N$



$$P_{det}(\phi, \tau) \neq P_{det}(-\phi, \tau)$$

For  $\tau < \tau^*$   $\phi_{opt} = \pm\pi/2N$  and  $P_{det}$  is  
 minimized at  $\phi = 0, \pm\pi/N$   
 $\downarrow$

chirality enhances the transfer in the  
 asymmetric cycle at target sites  
 $\delta = (N \pm 1)/2$

# Dark states

The presence of the detector divides the Hilbert space into two parts:

**Bright subspace**



$$P_{det}(\infty) = 1$$

**Dark subspace**



$$P_{det}(\infty) = 0$$

Dark states are orthogonal to the detection site  $|\delta\rangle$  and stationary with respect to evolution and detection attempts.

They satisfy the condition

$$\lambda_m \tau = \lambda_n \tau \pmod{2\pi}$$

with  $\lambda_{m,n}$  eigenvalues of the Hamiltonian. This equation can hold true in two cases:

1. Spectral degeneracies
2. Particular values of  $\phi$  and  $\tau$

# Dark states

## 1. Spectral degeneracies

These arises for  $\phi = 0, \pm\pi/N$ :

- *Even N* → dark states at  $\phi = 0$  do not affect the evolution of  $|\psi_0\rangle$  yielding  $P_{det}(\infty) = 1$ , while for  $\phi = \pm\pi/N$  the initial state is dark, yielding  $P_{det}(\infty) = 0$ .
- *Odd N* → the initial state has a finite overlap with dark states at  $\phi = 0, \pm\pi/N$ , yielding  $P_{det}(\infty) = 1/2$ .

## 2. Particular values of $\phi$ and $\tau$

When the eigenvalues are nondegenerate, dark states appear for

$$\tau_{dark} = \frac{k\pi}{2 \sin\left(\frac{\pi(m-n)}{N}\right) \sin\left(\phi - \frac{\pi(m+n)}{N}\right)} \geq \pi/2.$$

The solutions of this expression correspond to low-detection-probability curves in the parameters space. The first dark state associate with nondegenerate levels arises at  $\tau_{dark} \rightarrow \pi/2$  as  $N \rightarrow \infty$ . This establishes an upper bound for the optimal  $\tau$  consistent with the threshold  $\tau^*$ .

# Perron-Frobenius analysis

Perron-Frobenius operator

$$\hat{O}(\phi, \tau) = [\mathbb{I} - \hat{D}] \hat{U}(\phi, \tau)$$

describes the elementary step of the non-unitary evolution.

Survival probability

$$S_n = \|\hat{O}^n(\tau) |\psi_0\rangle\|^2 = 1 - P_{det}$$

is the probability that the walker has not been detected after  $n$  attempts.

In the long-time limit  $P_{det} = 1$  when  $S_n$  vanishes.

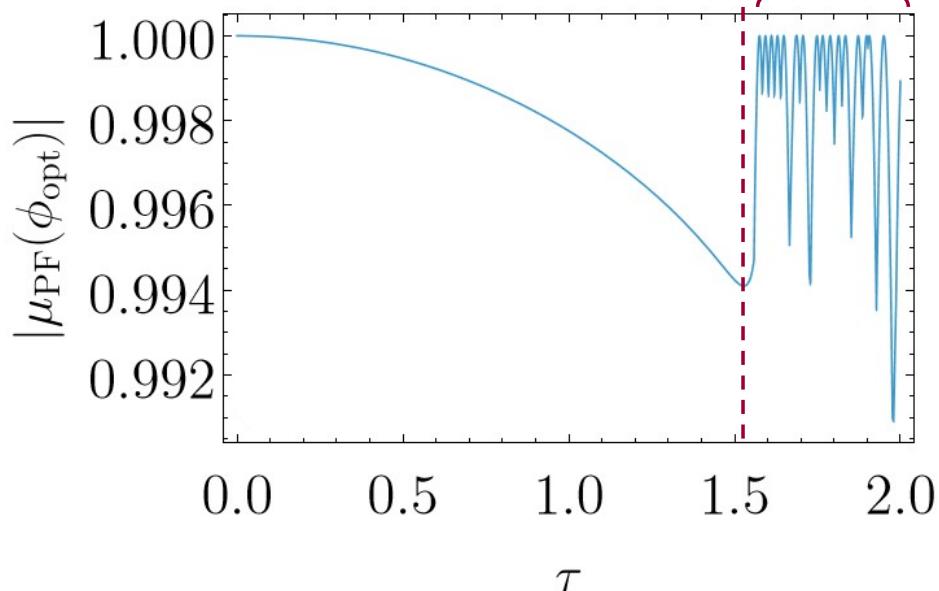
Eigenvectors of  $\hat{O}$  with  $|\mu_j| < 1$  give exponentially decaying contributions to  $S_n$ , while eigenvectors with  $|\mu_j| = 1$  yield non-decaying contributions that remain finite for  $n \rightarrow \infty$  (dark states).

So the asymptotic dynamics is determined by the **largest-modulus eigenvalue of P-F operator,  $\mu_{PF}$** .

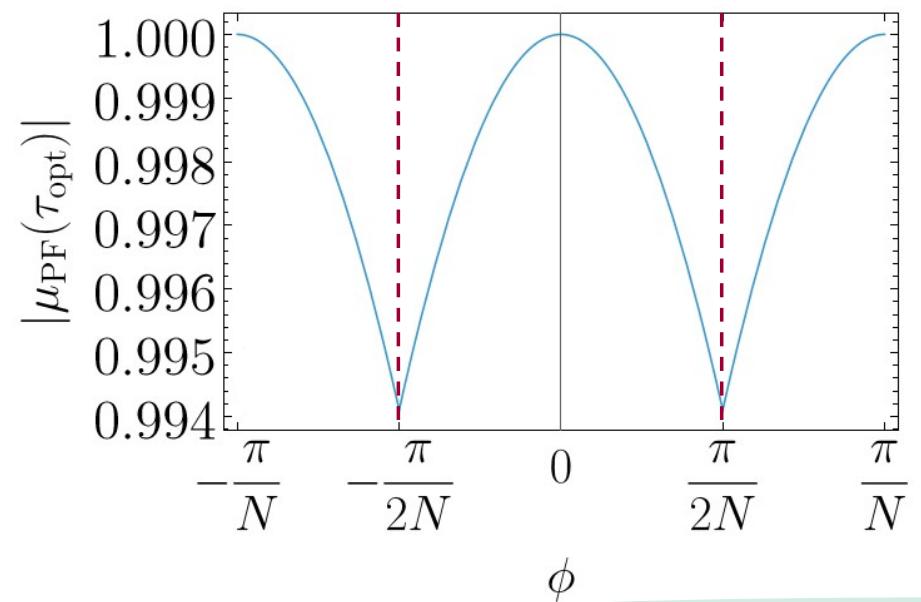
# Perron-Frobenius analysis

The optimal parameters,  $\tau_{opt}$  and  $\phi_{opt}$ , can be estimated by minimizing the modulus  $|\mu_{PF}|$ :

Minimum at  $\tau = \tau_{opt}$  ← Oscillatory behavior  
with  $|\mu_{PF}| = 1$  for specific  $\tau \rightarrow$  non-decaying modes



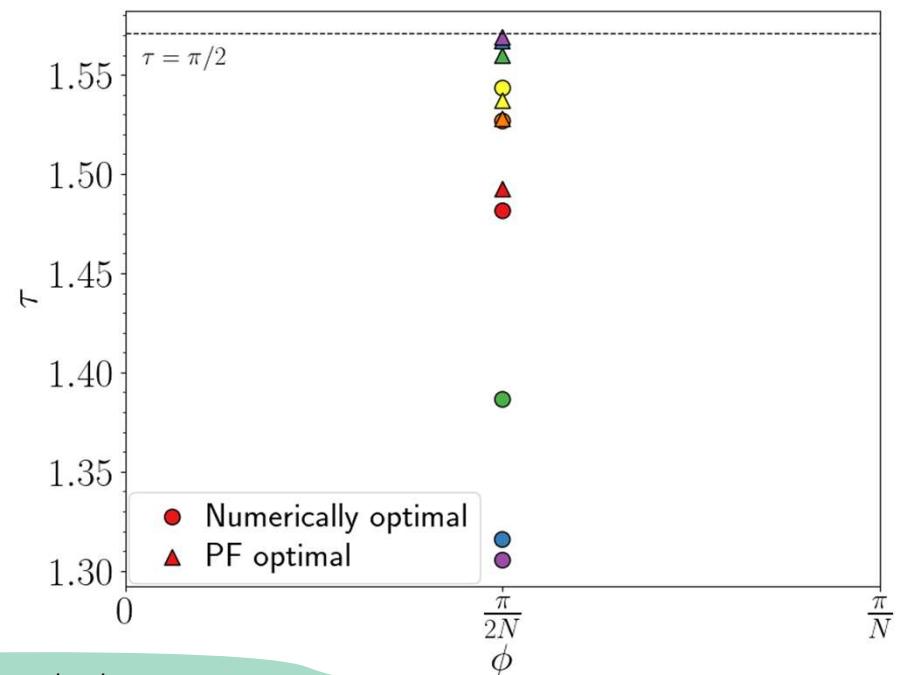
Minimum at the optimal phase  $\phi_{opt}$



# Finite-time effects

How predictive is the Perron-Frobenius analysis for the optimal parameters at finite time? It depends on how  $T$  is close to the **asymptotic time scale  $t_{as}$** :

- $T > t_{as} \rightarrow$  the asymptotic regime holds true:  $\phi_{opt} = \phi_{PF}$  and  $\tau_{opt} = \tau_{PF}$
- $T < t_{as} \rightarrow P_{det}$  does not saturate to its asymptotic value, the accuracy of the predictions is worsened



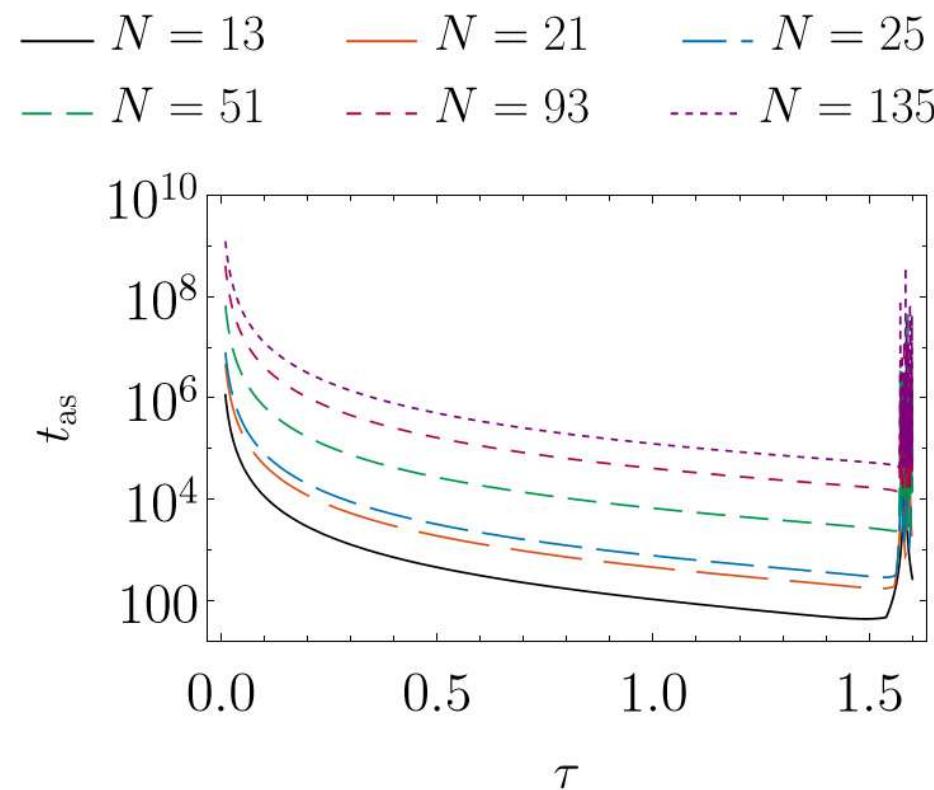
This means that for  $T = 200$ :

**High  $N \rightarrow T \ll t_{as} \rightarrow \begin{cases} \phi_{opt} = \phi_{PF} \\ \tau_{opt} \text{ decreasing, } \tau_{PF} \rightarrow \pi/2^- \end{cases}$**

**Small  $N \rightarrow T \gtrsim t_{as} \rightarrow \begin{cases} \phi_{opt} = \phi_{PF} \\ \tau_{opt} \approx \tau_{PF} \end{cases}$**

# Asymptotic time scale

The asymptotic time scale is governed by the spectral gap of the Perron-Frobenius operator  $\Delta \equiv 1 - |\mu_{PF}|$ , specifically, it can be estimated as  $t_{as} \sim 1/\Delta$ .



- ▶  $\tau \rightarrow 0$ :  $t_{as}$  diverges due to the quantum Zeno effect
- ▶  $0 < \tau < \tau^*$ :  $t_{as}$  decreases and reaches a **minimum at  $\tau_{PF}$**
- ▶  $\tau > \tau^*$  :  $t_{as}$  reflects the system's sensitiveness to small changes in  $\tau$  and  $\phi$ .

This trend persists with increasing  $N$ , which leads to larger  $t_{as}$  (longer time for the excitation to reach the target).

# Conclusions

- ▶ We developed an **optimal and robust protocol** which exploits **chirality** and **local monitoring** to enhance excitation transfer on a ring, with joint optimization of the chiral phase  $\phi$  and detection period  $\tau$  overcoming the limits of purely unitary dynamics.
- ▶ Our approach combines two key insights:
  1. The identification of dynamically relevant **dark states**,
  2. The spectral analysis of the non-unitary **Perron-Frobenius operator** to determine optimal parameters.
- ▶ The analysis is exact asymptotically and remains effective at finite times as long as the observation time  $T$  scales with the system size  $N$ . This offers a general framework for **enhancing transport in monitored quantum systems** beyond the simple model investigated here.

## Collaborators:

Giuliano Benenti, *University of Insubria*

Luca Razzoli, *University of Pavia*

Matteo G. A. Paris, *University of Milan*

Giovanni O. Luilli, *University of Milan*

**Thank you  
for your attention!**

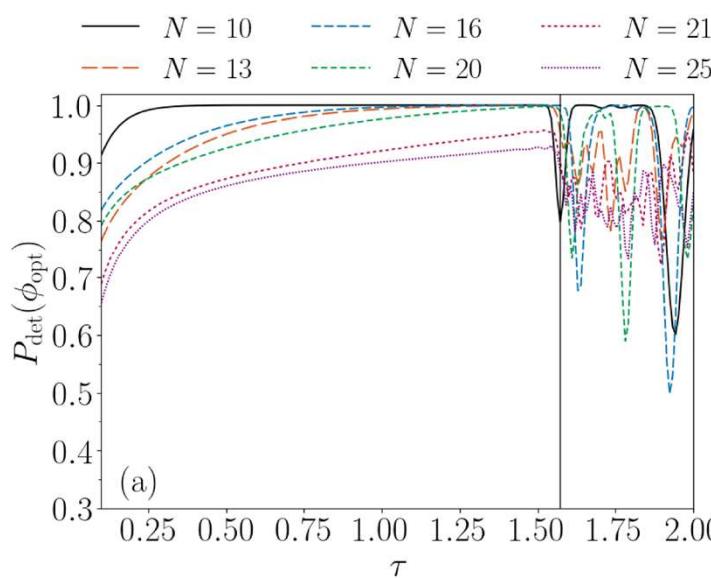
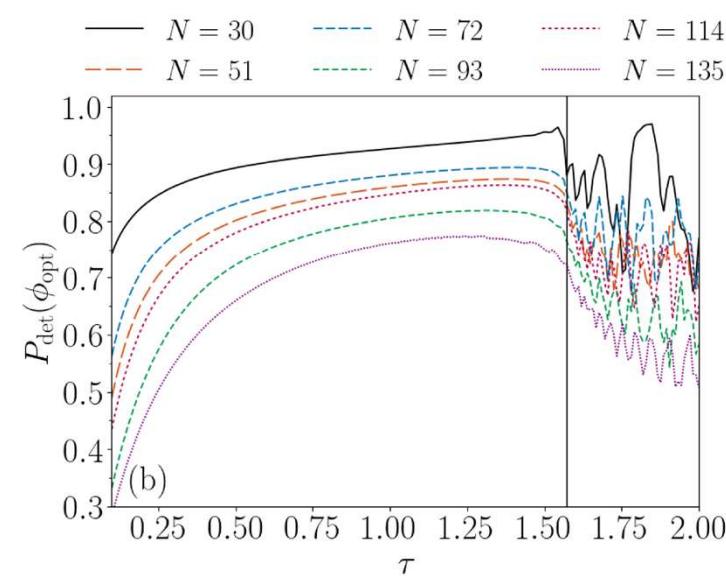
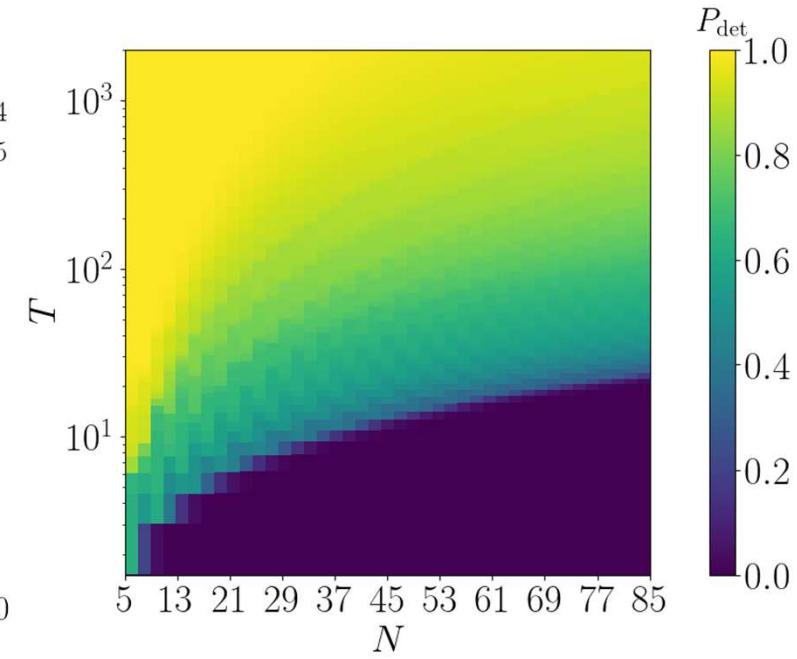
S. Finocchiaro, G. O. Luilli, G. Benenti, M. G. A. Paris, and L. Razzoli (2025),  
*Optimal quantum transport on a ring via locally monitored chiral quantum walks*,  
<https://arxiv.org/pdf/2507.10669>



# Finite-time effects

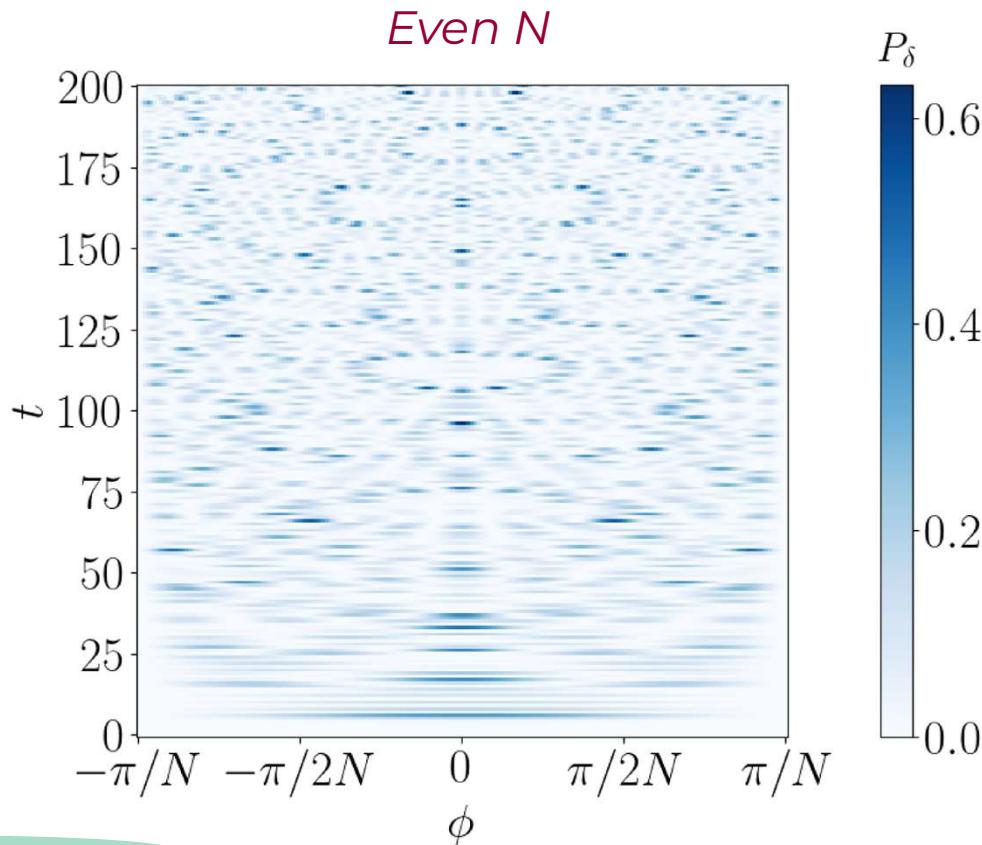
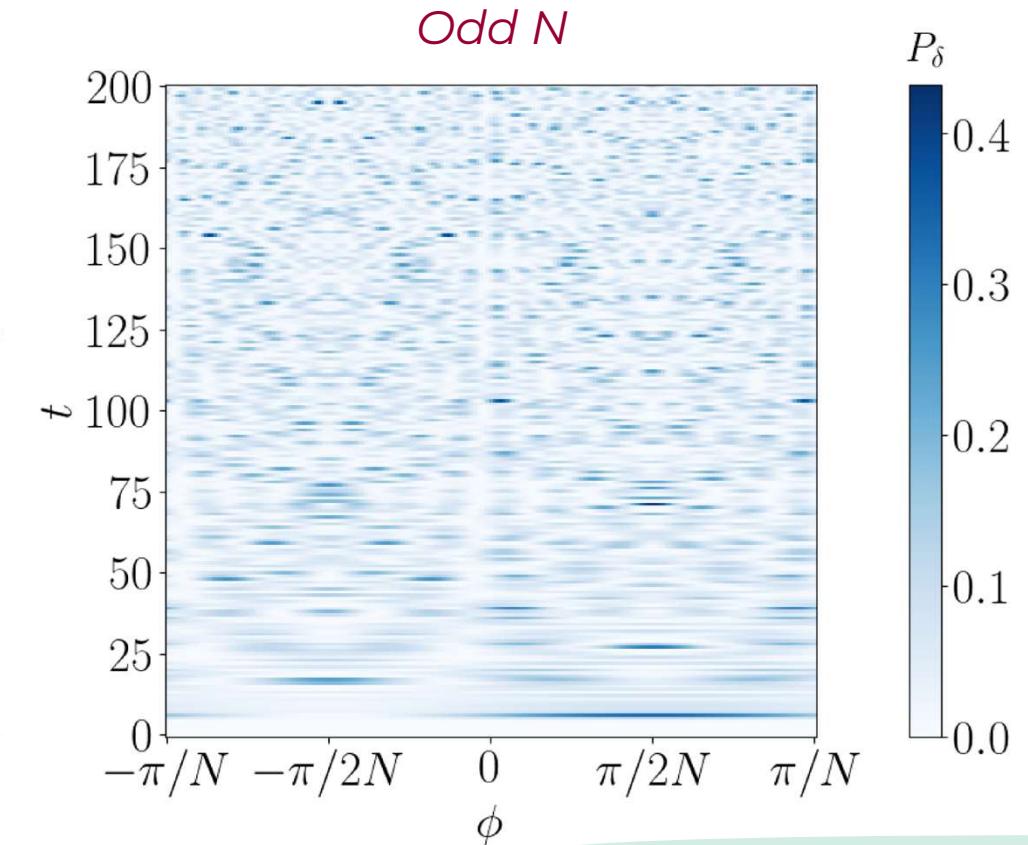
The detection probability correctly saturates to the asymptotic value for low system sizes,  $N \leq 20$ .

Larger system size  $\rightarrow$  longer time for the excitation to reach the target  $\rightarrow$  longer time scale over which the asymptotic behavior emerges and  $P_{det} = 1$ .



# Purely-coherent transport under unitary evolution

The purely-coherent transport under unitary dynamics is not efficient. The instantaneous probability  $P_\delta(\phi, t) = |\langle \delta | \hat{U}(\phi, t) | \psi_0 \rangle|^2$  remains low throughout the evolution, punctuated by narrow, sharp peaks.



# Perron-Frobenius analysis for even $N$

$|\mu_{PF}|$  shows two symmetric minima at  $\phi \neq 0$ , in contrast with the numerically optimal phase  $\phi_{opt} = 0$  that we expect for even  $N$ . On the other hand, dark states built using degenerate energy levels are irrelevant for excitation transfer at  $\phi = 0$ . Here one should consider the modulus of the subleading eigenvalue,  $|\tilde{\mu}_{PF}|$ , which is lower than the two local minima of  $|\mu_{PF}|$  at  $\phi \neq 0$ .

