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Model

We consider a continuous time chiral guantum walk on a ring, investigating

the role of chirality and local monitoring in enhancing the transfer of an
excitation between opposite sites.

Initial state: |[yY,) = |0)
IN/2) even N
(N +1)/2) odd N

Target site: |§) = {

N-1
H = z ™|+ D)+ |G — D)yl
j=0

The walker is observed by the
detector for the first time at the nth
attempt > First-detected-passage
time: nt
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Optimization problem

» Goal: find an optimal and robust transfer protocol that maximizes the

detection probability at the target site without requiring fine tuning of
parameters.

» Detection probability up to time nr:

Paec(n) = Loy B, With F, = (6,]D|6,,) and 16,) = T@[(1 - D)T@]" ™ o)

» The total time of the process is assumed to be a resource and fixed at a

convenient value T =200. P,.:(¢,7) after n=|T/t] detection attempt is
maximized over ¢ and .

H. Friedman, D. A. Kessler, and E. Barkai, Phys. Rev. E 95, 032141 (2017).
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Optimal detection period

Even N Odd N
-Pdet Pdct
r 4.0
» Highly structured 35
pattern with <

sharp oscillations 3.0
2.5
=20

» Threshold t* é———>—1‘.5 _
» Smooth behavior, | 1.0

generally
increasing with t

» Quantum Zeno

effect: Py — 0 as
T—>0
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/2N

—7 /N —7r/2 7 /N —7/N —7/2N m/2N w/N

We aim for a robust protocol that does not require prior
knowledge of parameters, so we restrict the optimization to
the region 0 < 7 < t* (We will show that for large N t* - n/27).
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Optimal phase

Even N
1.0 =
0.8 / \
0.6
iy
0.4
021 — 7-14
Ti=2
0.0 ‘ |
—m /N —m/2N 0 /2N T/N
¢

Piet(9,7) = Paer(— ¢, 7)
Fort <t* ¢popr = 0and Py =0
at ¢ = +n/N
N%
chirality inhibits excitation transfer
between opposite sites of the symmetric
cycle
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Odd N
0.9
0.8
0.7
0.67 | i
| —/ T = 1.—1 |
0.54 T=i2 \/
—7/N  —x/2N 0 7/2N 7/N
o)

Paet(¢,7) # Pger(— ¢, 7)
Fort <t* ¢opr = £m/2N and Py, iS
minimized at¢ =0,+n/N
N%
chirality enhances the transfer in the
asymmetric cycle at target sites
§ = (N +£1)/2
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Dark states

The presence of the detector divides the Hilbert space into two parts:

Bright subspace Dark subspace
N2 N2
Pger(o0) =1 Pget(0) =0

Dark states are orthogonal to the detection site |§) and stationary with respect
to evolution and detection attempts.
They satisfy the condition

AmT = A,t(mod 2m)
with 4,,, eigenvalues of the Hamiltonian. This equation can hold true in two
cases:

1. Spectral degeneracies
2. Particular valuesof¢p and t

F. Thiel, I. Mualem, D. Meidan, E. Barkai, and D. A. Kessler, Phys. Rev. Res. 2, 043107 (2020).
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Dark states

1. Spectral degeneracies

These arises for ¢ = 0, +m/N:

« Even N - dark states at ¢ = 0do not affect the evolution of |y,) yielding
P,.:(0) =1, while for ¢ = +n/N the initial state is dark, yielding P;,: () = 0.

« Odd N - the initial state has a finite overlap with dark states at ¢ = 0, +7/N,
yielding P; ;i (0) = 1/2.

2. Particularvaluesof pand t

When the eigenvalues are nondegenerate, dark states appear for
km

Hark = 2 sin (n( _ n)) sin (qb _mim +n) n))

>1/2.

N
The solutions of this expression correspond to |ow-detection-probability

curves in the parameters space. The first dark state associate with
nondegenerate levels arises at 1t 4 = /2 as N — . This establishes an upper
bound for the optimal T consistent with the threshold t*.
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Perron-Frobenius analysis

Perron-Frobenius operator
0(¢,7) =|1-D|U(¢p,7)

describes the elementary step of the non-unitary evolution.

Survival probability
Sn = 10" @) =1 = Paee
Is the probability that the walker has not been detected after n attempts.
In the long-time limit P;,; = 1 when §,, vanishes.
Eigenvectors of 0 with luj| < 1give exponentially decaying contributions to S,
while eigenvectors with |P-j| = 1yield non-decaying contributions that remain

finite for n - o (dark states).
So the asymptotic dynamics is determined by the largest-modulus eigenvalue

of P-F operator, |pf.

F. Thiel, I. Mualem, D. Meidan, E. Barkai, and D. A. Kessler, Phys. Rev. Res. 2, 043107 (2020).
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Perron-Frobenius analysis

The optimal parameters, 7,,, and ¢,,;, can be estimated by minimizing the
modulus |upg|:

Minimum at 7 = 7,,, <~.  Oscillatory behavior

S with |upr| = 1 for specific T - non-decaying modes
‘Ir—H

1000~~~ 'M Tk Minimum at the optimal phase qbopt
G008 \ | l| ||||“ 1.000F~ : e ! o
ool I |l 099t \ /N &/
3 0996E \\_. | v 0998;— | |
£ 0.994) P ¢ < 0.997] i i
0.992] : ' = 0.996; 1) :
A 0.995
00 05 1.0 15 20 0.994_-'1 _i ; L 7
T N 2N ON N
¢
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Finite-time effects

How predictive is the Perron-Frobenius analysis for the optimal parameters at
finite time? It depends on how T is close to the asymptotic time scale ¢t,;:

» T >ty 2 the asymptotic regime holds true: ¢,,r = ¢prand 1,y = Tpp

» T <t,, 2> Py,; does not saturate to its asymptotic value, the accuracy of the
predictions is worsened

N This means that for T = 200:

1.55] 7= é 135
’ 03 ¢ HIgh N> T Kty > Popt = Prr
1.50 A 45 7 |Tope decreasing, tpp = m/27
@
AF ] 51
- 1.45 -
<
1.401 95
b bopt = Prr
2L S SmallN>T =2t > 17 %"
1.35] Topt = TpF
@ Numerically optimal ‘
130] 4 PF optimal 13 )

0

(8]
-l 0@
>
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Asymptotic time scale

The asymptotic time scale is governed by the spectral gap of the Perron-
Frobenius operator A= 1 — |upg|, specifically, it can be estimated as t,; ~ 1/A.

—N=13 —N=21 —-N=2  » t-50:t, diverges due to the quantum
——N=51 =---N=93 - N =135 Zeno effect
o » 0<1<71"! ty; decreases and reaches a

. minimum at 7pp

108
NS » t>1° . t,, reflects the system’s
2 10° sensitiveness to small changes in T and ¢.
10% : : L : :
| This trend persists with increasing N, which
100t leads to larger t,; (longer time for the
0.0 excitation to reach the target).
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Conclusions

» We developed an optimal and robust protocol which exploits chirality and local
monitoring to enhance excitation transfer on a ring, with joint optimization of the chiral
phase ¢ and detection period T overcoming the limits of purely unitary dynamics.

» Our approach combines two key insights:
1. The identification of dynamically relevant dark states,

2. The spectral analysis of the non-unitary Perron-Frobenius operator to determine
optimal parameters.

» The analysis is exact asymptotically and remains effective at finite times as long as the
observation time T scales with the system size N. This offers a general framework for

enhancing transport in monitored quantum systems beyond the simple model
Investigated here.
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Finite-time effects

The detection probability correctly saturates to the asymptotic value for low
system sizes, N < 20.

Larger system size - longer time for the excitation to reach the target - longer
time scale over which the asymptotic behavior emerges and Py,; = 1.
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Purely-coherent transport under unitary evolution

The purely-coherent transport under unitary dynamics is not efficient. The instantaneous
probability Ps(p,t) = [(6|T(e, t)|1/)0)|2 remains low throughout the evolution, punctuated

by narrow, sharp peaks.

- Even N P, - Odd N P,
s 0.6 | 0.4
175 : 175
150 - - 1501 - :
0.3
1251 = - ‘\0.4 1251 _ 2
#1002 = — = + 1001 . 1 o2
751 2 = = 751 = =
= = — = 0.2
201 - = - 501 — = = = 0.1
25 — 25 —
- ——— ' 0.0 - \ - 0.0
—m/N —7/2N 0 /2N @/N —m/N —7/2N 0 /2N @/N
¢ ¢
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Perron-Frobenius analysis for even N

T[] Tm[gs;]

(a) (b)

lupr| shows two symmetric minima
at ¢#0, In contrast with the R R
numerically optimal phase ¢, =
0 that we expect for even N. On the

other hand, dark states built using . e i
degenerate energy levels are Lo
irrelevant for excitation transfer at A T ] 3 008 il
¢ = 0. Here one should consider the P o i
modulus of  the subleading BT ] | u 2T |
eigenvalue, |fipr| , which is lower than o ol § _ vo e L2l
the two local minima of |upr| at ¢ # 0. e | . N
| | IO'QS - 1.000f
; = 0.995
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