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Model 

Initial state: 𝜓଴ = |0⟩  

Target site: 𝛿 = ቊ
|𝑁 2⁄ ⟩  even 𝑁

|(𝑁 ± 1) 2⁄ ⟩  odd 𝑁
 

 

𝐻 = ෍ 𝑒ି௜థ| 𝑗 + 1 ே⟩⟨𝑗 +𝑒௜థ 𝑗 − 1 ே⟩⟨𝑗|

ேିଵ

௝ୀ଴

 

 
The walker is observed by the 
detector for the first time at the 𝑛𝑡ℎ 
attempt  First-detected-passage 
time: 𝑛𝜏 

We consider a continuous time chiral quantum walk on a ring, investigating 
the role of chirality and local monitoring in enhancing the transfer of an 
excitation between opposite sites. 
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Optimization problem 

Goal: find an optimal and robust transfer protocol that maximizes the 
detection probability at the target site without requiring fine tuning of 
parameters. 
 
Detection probability up to time 𝑛𝜏: 

 Pௗ௘௧(𝑛) = ∑ 𝐹௠
௡
௠ୀଵ  , with 𝐹௡ = ⟨𝜃௡ 𝐷෡ 𝜃௡⟩ and 𝜃௡ = 𝑈෡ 𝜏 𝕀 − 𝐷෡ 𝑈෡ 𝜏

௡ିଵ
|𝜓଴⟩. 

 
The total time of the process is assumed to be a resource and fixed at a 
convenient value 𝑇 = 200.  𝑃ௗ௘௧(𝜙, 𝜏)  after 𝑛 = 𝑇/𝜏  detection attempt is 
maximized over 𝜙 and 𝜏. 

 
 
 
H. Friedman, D. A. Kessler, and E. Barkai, Phys. Rev. E 95, 032141 (2017).
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Optimal detection period 

Highly structured 
pattern with 
sharp oscillations 

 

 
Threshold 𝝉∗ 

 
Smooth behavior, 
generally 
increasing with 𝜏 
 
Quantum Zeno 
effect: 𝑃ௗ௘௧ → 0 as 
𝜏 → 0  

Even N Odd N 

We aim for a robust protocol that does not require prior 
knowledge of parameters, so we restrict the optimization to 
the region 0 < 𝜏 ≤ 𝜏∗ (We will show that for large 𝑁  𝜏∗ → 𝜋/2ା). 



21/10/2025 6/13 

Optimal phase 

𝑃ௗ௘௧ 𝜙, 𝜏 = 𝑃ௗ௘௧(−𝜙, 𝜏) 
For 𝜏 < 𝜏∗  𝝓𝒐𝒑𝒕  =  𝟎 and 𝑃ௗ௘௧ = 0  

at 𝜙 =  ±𝜋/𝑁  
 

chirality inhibits excitation transfer 
between opposite sites of the symmetric 

cycle 

Even N Odd N 

𝑃ௗ௘௧ 𝜙, 𝜏 ≠ 𝑃ௗ௘௧(−𝜙, 𝜏) 
 For 𝜏 < 𝜏∗  𝝓𝒐𝒑𝒕  =  ±𝝅/𝟐𝑵 and 𝑃ௗ௘௧ is 

minimized at 𝜙 = 0, ±𝜋/𝑁  
 

chirality enhances the transfer in the 
asymmetric cycle at target sites  

𝛿 =  (𝑁 ± 1)/2 
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Dark states 
The presence of the detector divides the Hilbert space into two parts: 
 

Bright subspace    Dark subspace 
       

𝑃ௗ௘௧ ∞ = 1    𝑃ௗ௘௧ ∞ = 0 
  

Dark states are orthogonal to the detection site |𝛿⟩ and stationary with respect 
to evolution and detection attempts.  
They satisfy the condition 

𝜆௠𝜏 = 𝜆௡𝜏(mod 2𝜋) 
with 𝜆௠,௡ eigenvalues of the Hamiltonian. This equation can hold true in two 
cases: 
1. Spectral degeneracies 
2. Particular values of 𝜙 and 𝜏  

 
F. Thiel, I. Mualem, D. Meidan, E. Barkai, and D. A. Kessler, Phys. Rev. Res. 2, 043107 (2020).
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Dark states 
1.   Spectral degeneracies 
These arises for 𝜙 = 0, ±𝜋/𝑁: 
• Even 𝑁  dark states at 𝜙 = 0 do not affect the evolution of |𝜓଴⟩ yielding 

𝑃ௗ௘௧ ∞ = 1, while for 𝜙 = ±𝜋/𝑁  the initial state is dark, yielding 𝑃ௗ௘௧ ∞ = 0. 
• Odd 𝑁  the initial state has a finite overlap with dark states at 𝜙 = 0, ±𝜋/𝑁, 

yielding 𝑃ௗ௘௧ ∞ = 1/2.  
 
2.   Particular values of 𝝓 and 𝝉  
When the eigenvalues are nondegenerate, dark states appear for 

𝜏ௗ௔௥௞ =
𝑘𝜋

2 sin
𝜋(𝑚 − 𝑛)

𝑁
sin 𝜙 −

𝜋(𝑚 + 𝑛)
𝑁

≥ 𝜋/2. 

The solutions of this expression correspond to low-detection-probability 
curves in the parameters space. The first dark state associate with 
nondegenerate levels arises at 𝜏ௗ௔௥௞ → 𝜋/2 as 𝑁 → ∞. This establishes an upper 
bound for the optimal 𝜏 consistent with the threshold  𝜏∗. 
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Perron-Frobenius analysis 

Perron-Frobenius operator  
𝑂෠ 𝜙, 𝜏 = 𝕀 − 𝐷෡ 𝑈෡(𝜙, 𝜏) 

describes the elementary step of the non-unitary evolution. 
 

Survival probability  
𝑆௡ = 𝑂෠௡ 𝜏 𝜓଴

ଶ
= 1 − 𝑃ௗ௘௧  

is the probability that the walker has not been detected after 𝑛 attempts.  
In the long-time limit 𝑃ௗ௘௧ = 1 when 𝑆௡ vanishes.  
Eigenvectors of 𝑂෠ with |µ௝|  <  1 give exponentially decaying contributions to 𝑆௡, 
while eigenvectors with µ௝ =  1 yield non-decaying contributions that remain 
finite for 𝑛 → ∞ (dark states).  
So the asymptotic dynamics is determined by the largest-modulus eigenvalue 
of P-F operator, µ𝑷𝑭. 
 
 
F. Thiel, I. Mualem, D. Meidan, E. Barkai, and D. A. Kessler, Phys. Rev. Res. 2, 043107 (2020).
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The optimal parameters, 𝜏௢௣௧ and 𝜙௢௣௧ , can be estimated by minimizing the 
modulus 𝜇௉ி : 
 
  Minimum at 𝜏 = 𝜏௢௣௧     Oscillatory behavior  
     with 𝜇௉ி = 1 for specific 𝜏  non-decaying modes 
 

Minimum at the optimal phase 𝜙௢௣௧ 

10/13 

Perron-Frobenius analysis 
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Finite-time effects 
How predictive is the Perron-Frobenius analysis for the optimal parameters at 
finite time? It depends on how 𝑇 is close to the asymptotic time scale 𝒕𝒂𝒔: 

𝑻 > 𝒕𝒂𝒔  the asymptotic regime holds true: 𝜙௢௣௧  =  𝜙௉ி and 𝜏௢௣௧  =  𝜏௉ி 

𝑻 < 𝒕𝒂𝒔  𝑃ௗ௘௧ does not saturate to its asymptotic value, the accuracy of the 
predictions is worsened 

This means that for 𝑇 = 200: 
 

High N  𝑇 ≪ 𝑡௔௦ ൝
𝜙௢௣௧ = 𝜙௉ி

𝜏௢௣௧ decreasing, 𝜏௉ி → 𝜋/2ି 

 
 

Small N  𝑇 ≳ 𝑡௔௦  ቊ
𝜙௢௣௧ = 𝜙௉ி

𝜏௢௣௧ ≈ 𝜏௉ி
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Asymptotic time scale 

The asymptotic time scale is governed by the spectral gap of the Perron-
Frobenius operator ∆ ≡  1 −  |µ௉ி|, specifically, it can be estimated as 𝒕𝒂𝒔  ∼ 𝟏/∆. 

𝜏 → 0:  𝑡௔௦  diverges due to the quantum 
Zeno effect 

0 < 𝜏 < 𝜏∗ : 𝑡௔௦  decreases and reaches a 
minimum at 𝝉𝑷𝑭  

𝜏 > 𝜏∗ : 𝑡௔௦ reflects the system’s 
sensitiveness to small changes in 𝜏 and 𝜙. 

 

This trend persists with increasing 𝑁, which 
leads to larger 𝑡௔௦  (longer time for the 
excitation to reach the target). 
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We developed an optimal and robust protocol which exploits chirality and local 
monitoring to enhance excitation transfer on a ring, with joint optimization of the chiral 
phase 𝜙 and detection period 𝜏 overcoming the limits of purely unitary dynamics. 

Our approach combines two key insights:  
1. The identification of dynamically relevant dark states, 
2. The spectral analysis of the non-unitary Perron-Frobenius operator to determine 

optimal parameters.  

The analysis is exact asymptotically and remains effective at finite times as long as the 
observation time 𝑇 scales with the system size 𝑁. This offers a general framework for 
enhancing transport in monitored quantum systems beyond the simple model 
investigated here. 

Collaborators: 
Giuliano Benenti, University of Insubria 
Luca Razzoli, University of Pavia 
Matteo G. A. Paris, University of Milan 
Giovanni O. Luilli, University of Milan 
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Conclusions 

Thank you  
for your attention! 

S. Finocchiaro, G. O. Luilli, G. Benenti, M. G. A. Paris, and L. Razzoli (2025), 
Optimal quantum transport on a ring via locally monitored chiral quantum walks,

https://arxiv.org/pdf/2507.10669
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Finite-time effects 

The detection probability correctly saturates to the asymptotic value for low 
system sizes, 𝑁 ≤  20.  
Larger system size  longer time for the excitation to reach the target  longer 
time scale over which the asymptotic behavior emerges and 𝑃ௗ௘௧ = 1. 
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Purely-coherent transport under unitary evolution 
The purely-coherent transport under unitary dynamics is not efficient. The instantaneous 
probability 𝑃ఋ(𝜙, 𝑡)  =  𝛿 𝑈෡ 𝜙, 𝑡 𝜓଴

ଶ
 remains low throughout the evolution, punctuated 

by narrow, sharp peaks.  

Even N   Odd N 
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Perron-Frobenius analysis for even N 

|𝜇௉ி| shows two symmetric minima 
at 𝜙 ≠ 0 , in contrast with the 
numerically optimal phase 𝜙௢௣௧  =

 0 that we expect for even 𝑁.  On the 
other hand, dark states built using 
degenerate energy levels are 
irrelevant for excitation transfer at 
𝜙 =  0 . Here one should consider the 
modulus of the subleading 
eigenvalue, |𝜇෤௉ி| , which is lower than 
the two local minima of |𝜇௉ி| at 𝜙 ≠ 0.  


